Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This article describes a mechanistic study of copper-catalyzed hydroalkylation of terminal alkynes. Relying on the established chemistry of N-heterocyclic carbene copper hydride (NHCCuH) complexes, we previously proposed that the hydroalkylation reaction proceeds by hydrocupration of an alkyne by NHCCuH followed by alkylation of the resulting alkenylcopper intermediate by an alkyl triflate. NHCCuH is regenerated from NHCCuOTf through substitution with CsF followed by transmetalation with silane. According to this proposal, NHCCuH must react with an alkyne faster than with an alkyl triflate to avoid reduction of the alkyl triflate. However, we have determined that NHCCuH reacts with alkyl triflates significantly faster than with terminal alkynes, strongly suggesting that the previously proposed mechanism is incorrect. Additionally, we have found that NHCCuOTf rapidly traps NHCCuX (X = F, H, alkenyl) complexes to produce (NHCCu)2(μ-X)(OTf) (X = F, H, alkenyl) complexes. In this article, we propose a new mechanism for hydroalkylation of alkynes that features dinuclear (NHCCu)2(μ-H)(OTf) (X = F, H, alkenyl) complexes as key catalytic intermediates. The results of our study establish feasible pathways for the formation of these intermediates, their ability to participate in the elementary steps of the proposed catalytic cycle, and their ability to serve as competent catalysts in the hydroalkylation reaction. We also provide evidence that the unusual reactivity of the dinuclear complexes is responsible for efficient hydroalkylation of alkynes without concomitant side reactions of the highly reactive alkyl triflates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.5b03086 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!