FAST: FAST Analysis of Sequences Toolbox.

Front Genet

Quantitative and Systems Biology Program, University of California, Merced Merced, CA, USA ; Molecular Cell Biology Unit, School of Natural Sciences, University of California, Merced Merced, CA, USA.

Published: June 2015

FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4437040PMC
http://dx.doi.org/10.3389/fgene.2015.00172DOI Listing

Publication Analysis

Top Keywords

fast
12
fast fast
8
fast analysis
8
analysis sequences
8
sequences toolbox
8
biological data
8
perl bioperl
8
data
5
toolbox fast
4
toolbox simple
4

Similar Publications

Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.

View Article and Find Full Text PDF

Unlabelled: LCN2 has an osteokine important for appetite regulation; in type 2 diabetes (T2D) it is not known whether appetite regulation mediated by LCN2 in the brain is altered. In this work, we focus on exploring the role of blocking LCN2 in metabolic health and appetite regulation within the central nervous system of mice with T2D.

Material And Methods: 4-week-old male C57BL/6 mice were used, divided into four experimental groups: intact, T2D, TD2/anti-LCN2, and T2D/IgG as isotype control.

View Article and Find Full Text PDF

Carboranyl amines are distinct from typical organic amines. Due to the electronic influence of the carborane cage, they have low nucleophilicity and are reluctant to alkylate. Moreover, asymmetric synthesis of chiral carboranes is still in its infancy.

View Article and Find Full Text PDF

Obesity is considered an important factor contributing to the development of atherosclerosis. Inflammation plays a key role in endothelial dysfunction (ED), an initial stage of the atherosclerotic process. Several microRNAs (miRNAs) may play an important role in the inflammatory process, but there is a lack of information about their participation in the early stages of atherosclerosis development in patients with obesity.

View Article and Find Full Text PDF

A mouse coccygeal intervertebral disc degeneration model with tail-looping constructed using a suturing method.

Animal Model Exp Med

January 2025

Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China.

Backgroud: Intervertebral disc degeneration (IDD) is one of the common degenerative diseases. Due to ethical constraints, it is difficult to obtain sufficient research on humans, so the use of an animal model of IDD is very important to clarify the pathogenesis and treatment mechanism of the disease.

Methods: In this study, thirty 2-month-old mice were selected for operation to establish a coccygeal IDD model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!