Inhibition shapes acoustic responsiveness in spherical bushy cells.

J Neurosci

Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, D-04103 Leipzig, Germany

Published: June 2015

Signal processing in the auditory brainstem is based on an interaction of neuronal excitation and inhibition. To date, we have incomplete knowledge of how the dynamic interplay of both contributes to the processing power and temporal characteristics of signal coding. The spherical bushy cells (SBCs) of the anteroventral cochlear nucleus (AVCN) receive their primary excitatory input through auditory nerve fibers via large, axosomatic synaptic terminals called the endbulbs of Held and by additional, acoustically driven inhibitory inputs. SBCs provide the input to downstream nuclei of the brainstem sound source localization circuitry, such as the medial and lateral superior olive, which rely on temporal precise inputs. In this study, we used juxtacellular recordings in anesthetized Mongolian gerbils to assess the effect of acoustically evoked inhibition on the SBCs input-output function and on temporal precision of SBC spiking. Acoustically evoked inhibition proved to be strong enough to suppress action potentials (APs) of SBCs in a stimulus-dependent manner. Inhibition shows slow onset and offset dynamics and increasing strength at higher sound intensities. In addition, inhibition decreases the rising slope of the EPSP and prolongs the EPSP-to-AP transition time. Both effects can be mimicked by iontophoretic application of glycine. Inhibition also improves phase locking of SBC APs to low-frequency tones by acting as a gain control to suppress poorly timed EPSPs from generating postsynaptic APs to maintain precise SBC spiking across sound intensities. The present data suggest that inhibition substantially contributes to the processing power of second-order neurons in the ascending auditory system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6605330PMC
http://dx.doi.org/10.1523/JNEUROSCI.0133-15.2015DOI Listing

Publication Analysis

Top Keywords

inhibition
8
spherical bushy
8
bushy cells
8
contributes processing
8
processing power
8
acoustically evoked
8
evoked inhibition
8
sbc spiking
8
sound intensities
8
inhibition shapes
4

Similar Publications

SARS-CoV-2 membrane protein induces neurodegeneration via affecting Golgi-mitochondria interaction.

Transl Neurodegener

December 2024

Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China.

Background: Neurological complications are a significant concern of Coronavirus Disease 2019 (COVID-19). However, the pathogenic mechanism of neurological symptoms associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is poorly understood.

Methods: We used Drosophila as a model to systematically analyze SARS-CoV-2 genes encoding structural and accessory proteins and identified the membrane protein (M) that disrupted mitochondrial functions in vivo.

View Article and Find Full Text PDF

Background: Drug resistance remains a significant obstacle to Acute myeloid leukemia (AML) successful treatment, often leading to therapeutic failure. Our previous studies demonstrated that Glioma-associated oncogene-1 (GLI1) reduces chemotherapy sensitivity and promotes cell proliferation in AML cells. GANT61, an inhibitor of GLI1, emerges as a promising candidate in AML treatment.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is a type of cancer characterized by a vast intracellular accumulation of lipids that are critical to sustain growth and viability of the cells in the tumour microenvironment. Stearoyl-CoA 9-desaturase 1 (SCD-1) is an essential enzyme for the synthesis of monounsaturated fatty acids and consistently overexpressed in all stages of ccRCC growth.

Methods: Human clear cell renal cell carcinoma lines were treated with small-molecule inhibitors of protein kinase CK2.

View Article and Find Full Text PDF

Lipid droplet formation induced by icaritin derivative IC2 promotes a combination strategy for cancer therapy.

Chin Med

December 2024

MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, China.

Background: Lipid metabolism is crucial in cancer progression. Lipid droplets (LDs) generated in cancer cells can act as protective mechanisms through alleviating lipotoxicity under stress conditions. We previously developed IC2 from the Chinese medicine icaritin as an inhibitor of stearoyl-CoA desaturase 1 (SCD1).

View Article and Find Full Text PDF

Chemotherapy is still one of the major approaches in triple-negative breast cancer (TNBC) treatment. The development of new formulations for classic chemotherapeutic drugs remains interests in studies. Camptothecin (CPT) is powerful antitumor agents in TNBC treatment though its clinic applications are limited by its low water solubility and systemic toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!