Synthesis and structure-activity relationship of aminoarylthiazole derivatives as correctors of the chloride transport defect in cystic fibrosis.

Eur J Med Chem

Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; Center of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 5, 16132 Genoa, Italy. Electronic address:

Published: June 2015

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel present in the membrane of epithelial cells. Mutations affecting the CFTR gene cause cystic fibrosis (CF), a multi-organ severe disease. The most common CF mutation, F508del, impairs the processing and activity (gating) of CFTR protein. Other mutations, like G551D, only cause a gating defect. Processing and gating defects can be targeted by small molecules called generically correctors and potentiators, respectively. Aminoarylthiazoles (AATs) represent an interesting class of compounds that includes molecules with dual activity, as correctors and potentiators. With the aim to improve the activity profile of AATs, we have now designed and synthesized a library of novel compounds in order to establish an initial SAR that may provide indications about the chemical groups that are beneficial or detrimental for rescue activity. The new compounds were tested as correctors and potentiators in CFBE41o-expressing F508del-CFTR using a functional assay. A dual active compound, AAT-4a, characterized by improved efficacy and marked synergy when combined with the corrector VX-809 has been identified. Moreover, by computational methods, a possible binding site for AATs in nucleotide binding domain NBD1 has been detected. These results will direct the synthesis of new analogues with possibly improved activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2015.05.030DOI Listing

Publication Analysis

Top Keywords

correctors potentiators
12
cystic fibrosis
8
activity
5
synthesis structure-activity
4
structure-activity relationship
4
relationship aminoarylthiazole
4
aminoarylthiazole derivatives
4
correctors
4
derivatives correctors
4
correctors chloride
4

Similar Publications

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

Limb-girdle muscular dystrophy type 2E/R4 (LGMD2E/R4) is a rare disease that currently has no cure. It is caused by defects in the gene, mainly missense mutations, which cause the impairment of the sarcoglycan complex, membrane fragility, and progressive muscle degeneration. Here, we studied the fate of some β-sarcoglycan (β-SG) missense mutants, confirming that, like α-SG missense mutants, they are targeted for degradation through the ubiquitin-proteasome system.

View Article and Find Full Text PDF

Background: Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) channel. For people with CF (pwCF) affected by the most common pathogenic variant F508del, a tritherapy, named Trikafta/Kaftrio (ETI: elexacaftor (VX-445) /tezacaftor (VX-661) / ivacaftor (VX-770)) was successfully developed. However, in CF airway epithelial cells the calcium homeostasis is also disturbed; it is observed an increased calcium mobilization in CF cells compared to non-CF cells.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers investigated the G85E-CFTR variant using human nasal epithelial cells and found that the drugs elexacaftor and tezacaftor modestly improved CFTR function, but chronic treatment with ivacaftor had negative effects.
  • * The study suggests that combining elexacaftor with a new corrector, ARN23765, can significantly enhance CFTR activity and highlights the need for better drug combinations to help patients with the G85E mutation.
View Article and Find Full Text PDF
Article Synopsis
  • The introduction of modulators, correctors, and potentiators for the CFTR molecule has significantly improved the health of most individuals with cystic fibrosis (CF).
  • While these therapies impact certain fatty acids, they do not address linoleic acid (LA) deficiency, which is linked to more severe forms of CF.
  • The review examines lipid abnormalities in CF patients, such as altered phospholipid and cholesterol levels, and their connection to clinical symptoms, revealing these lipid issues can manifest before birth.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!