Mammalian target of rapamycin (mTOR) signaling pathway plays a key role in muscle development and is involved in multiple intracellular signaling pathways. Myocyte enhancer factor-2 (MEF2) regulates muscle cell proliferation and differentiation. However, how the mTOR signaling pathway regulates MEF2 activity remains unclear. We isolated goat skeletal muscle satellite cells (gSSCs) as model cells to explore mTOR signaling pathway regulation of MEF2C. We inhibited mTOR activity in gSSCs with PP242 and found that MEF2C phosphorylation was decreased and that muscle creatine kinase (MCK) expression was suppressed. Subsequently, we detected integrin-linked kinase (ILK) using MEF2C coimmunoprecipitation; ILK and MEF2C were colocalized in the gSSCs. We found that inhibiting mTOR activity increased ILK phosphorylation levels and that inhibiting ILK activity with Cpd 22 and knocking down ILK with small interfering RNA increased MEF2C phosphorylation and MCK expression. In the presence of Cpd 22, mTOR activity inhibition did not affect MEF2C phosphorylation. Moreover, ILK dephosphorylated MEF2C in vitro. These results suggest that the mTOR signaling pathway regulates MEF2C positively and regulates ILK negatively and that ILK regulates MEF2C negatively. It appears that the mTOR signaling pathway regulates MEF2C through ILK, further regulating the expression of muscle-related genes in gSSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbin.10499 | DOI Listing |
Diabetes Metab J
January 2025
NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
Background: In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
February 2025
Department of Gastroenterology, The Second Hospital of Heilongjiang Province, Harbin City, Heilongjiang Province, China.
Colorectal cancer (CRC) represents a significant global health challenge, with approximately 1.8 million new cases diagnosed annually and a mortality toll exceeding 881,000 lives each year. This study aimed to evaluate the chemoprotective efficacy of Cyanidin-3-glucoside (C3G) in a rat model of CRC induced by 1,2-dimethylhydrazine (DMH).
View Article and Find Full Text PDFNat Commun
January 2025
NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Membrane bound histidine kinases (HKs) are ubiquitous sensors of extracellular stimuli in bacteria. However, a uniform structural model is still missing for their transmembrane signaling mechanism. Here, we used solid-state NMR in conjunction with crystallography, solution NMR and distance measurements to investigate the transmembrane signaling mechanism of a paradigmatic citrate sensing membrane embedded HK, CitA.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India.
Cancer Stem Cells (CSCs) play an important role in the development, resistance, and recurrence of many malignancies. These subpopulations of tumor cells have the potential to self-renew, differentiate, and resist conventional therapy, highlighting their importance in cancer etiology. This review explores the regulatory mechanisms of CSCs in breast, cervical, and lung cancers, highlighting their plasticity, self-renewal, and differentiation capabilities.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, Olsztyn, 10-719, Poland.
Multicellular animals need to control the spread of invading pathogens. This is a particular challenge for blood-feeding vectors such as ticks, which ingest large amounts of blood potentially laden with harmful microorganisms. Ticks have a basic innate immune system and protect themselves from infection through innate immune responses involving pathways such as Janus kinase (JAK) or the signalling transducer activator of transcription (STAT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!