Background: The bacterium Corynebacterium pseudotuberculosis (Cp) causes caseous lymphadenitis (CLA), mastitis, ulcerative lymphangitis, and oedema in a number of hosts, comprising ruminants, thereby intimidating economic and dairy industries worldwide. So far there is no effective drug or vaccine available against Cp. Previously, a pan-genomic analysis was performed for both biovar equi and biovar ovis and a Pathogenicity Islands (PAIS) analysis within the strains highlighted a large set of proteins that could be relevant therapeutic targets for controlling the onset of CLA. In the present work, a structural druggability analysis pipeline was accomplished along 15 previously sequenced Cp strains from both biovar equi and biovar ovis.

Methods And Results: We computed the whole modelome of a reference strain Cp1002 (NCBI Accession: NC_017300.1) and then the homology models of proteins, of 14 different Cp strains, with high identity (≥ 85%) to the reference strain were also done. Druggability score of all proteins pockets was calculated and only those targets that have a highly druggable (HD) pocket in all strains were kept, a set of 58 proteins. Finally, this information was merged with the previous PAIS analysis giving two possible highly relevant targets to conduct drug discovery projects. Also, off-targeting information against host organisms, including Homo sapiens and a further analysis for protein essentiality provided a final set of 31 druggable, essential and non-host homologous targets, tabulated in table S4, additional file 1. Out of 31 globally druggable targets, 9 targets have already been reported in other pathogenic microorganisms, 3 of them (3-isopropylmalate dehydratase small subunit, 50S ribosomal protein L30, Chromosomal replication initiator protein DnaA) in C. pseudotuberculosis.

Conclusion: Overall we provide valuable information of possible targets against C. pseudotuberculosis where some of these targets have already been reported in other microorganisms for drug discovery projects, also discarding targets that might be physiologically relevant but are not amenable for drug binding. We propose that the constructed in silico dataset might serve as a guidance for the scientific community to have a better understanding while selecting putative therapeutic protein candidates as druggable ones as effective measures against C. pseudotuberculosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460585PMC
http://dx.doi.org/10.1186/1471-2164-16-S5-S9DOI Listing

Publication Analysis

Top Keywords

targets
10
corynebacterium pseudotuberculosis
8
druggable targets
8
biovar equi
8
equi biovar
8
pais analysis
8
set proteins
8
reference strain
8
drug discovery
8
discovery projects
8

Similar Publications

Background/aims: Certain sociodemographic groups are routinely underrepresented in clinical trials, limiting generalisability. Here, we describe the extent to which enriched enrolment approaches yielded a diverse trial population enriched for older age in a randomised controlled trial of a blood-based multi-cancer early detection test (NCT05611632).

Methods: Participants aged 50-77 years were recruited from eight Cancer Alliance regions in England.

View Article and Find Full Text PDF

Unveiling the role of miRNAs in Diminished Ovarian Reserve: an in silico network approach.

Syst Biol Reprod Med

December 2025

Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.

MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.

View Article and Find Full Text PDF

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!