Unlabelled: Certain members of the Arenaviridae family are category A agents capable of causing severe hemorrhagic fevers in humans. Specific antiviral treatments do not exist, and the only commonly used drug, ribavirin, has limited efficacy and can cause severe side effects. The discovery and development of new antivirals are inhibited by the biohazardous nature of the viruses, making them a relatively poorly understood group of human pathogens. We therefore adapted a reverse-genetics minigenome (MG) rescue system based on Junin virus, the causative agent of Argentine hemorrhagic fever, for high-throughput screening (HTS). The MG rescue system recapitulates all stages of the virus life cycle and enables screening of small-molecule libraries under biosafety containment level 2 (BSL2) conditions. The HTS resulted in the identification of four candidate compounds with potent activity against a broad panel of arenaviruses, three of which were completely novel. The target for all 4 compounds was the stage of viral entry, which positions the compounds as potentially important leads for future development.

Importance: The arenavirus family includes several members that are highly pathogenic, causing acute viral hemorrhagic fevers with high mortality rates. No specific effective treatments exist, and although a vaccine is available for Junin virus, the causative agent of Argentine hemorrhagic fever, it is licensed for use only in areas where Argentine hemorrhagic fever is endemic. For these reasons, it is important to identify specific compounds that could be developed as antivirals against these deadly viruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524252PMC
http://dx.doi.org/10.1128/JVI.00997-15DOI Listing

Publication Analysis

Top Keywords

rescue system
12
argentine hemorrhagic
12
hemorrhagic fever
12
minigenome rescue
8
hemorrhagic fevers
8
treatments exist
8
junin virus
8
virus causative
8
causative agent
8
agent argentine
8

Similar Publications

Emergency shelters are multifunctional spaces that provide safe refuge, essential life protection, and rescue command for residents in case of urban disaster. These shelters constitute crucial components of urban public safety. This study, with Tianhe District in Guangzhou City as a case study, used data from emergency evacuation sites and other socio-economic sources to construct an evaluation system for spatial suitability evaluation and layout optimization of emergency shelters.

View Article and Find Full Text PDF

Counteracting Alzheimer's disease normalizing neurovascular unit with a self-regulated multi-functional nano-modulator.

Acta Pharm Sin B

December 2024

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.

The neurovascular unit (NVU) is highly responsible for cerebral homeostasis and its dysfunction emerges as a critical contributor to Alzheimer's disease (AD) pathology. Hence, rescuing NVU dysfunction might be a viable approach to AD treatments. Here, we fabricated a self-regulated muti-functional nano-modulator (siR/PIO@RP) that can intelligently navigate to damaged blood-brain barrier and release therapeutical cargoes for synergetic AD therapy.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) of tumor cells, which is characterized by releasing immunostimulatory "find me" and "eat me" signals, expressing proinflammatory cytokines and providing personalized and broad-spectrum tumor antigens draws increasing attention in developing a tumor vaccine. In this study, we aimed to investigate whether the influenza virus (IAV) is efficient enough to induce ICD in tumor cells and an extra modification of IAV components such as hemeagglutinin (HA) will be helpful for the ICD-induced cells to elicit robust antitumor effects; in addition, to evaluate whether the membrane-engineering polylactic coglycolic acid nanoparticles (PLGA NPs) simulating ICD immune stimulation mechanisms hold the potential to be a promising vaccine candidate, a mouse melanoma cell line (B16-F10 cell) was infected with IAV rescued by the reverse genetic system, and the prepared cells and membrane-modified PLGA NPs were used separately to immunize the melanoma-bearing mice. IAV-infected tumor cells exhibit dying status, releasing high mobility group box-1 (HMGB1) and adenosine triphosphate (ATP), and exposing calreticulin (CRT), IAV hemeagglutinin (HA), and tumor antigens like tyrosinase-related protein 2 (TRP2).

View Article and Find Full Text PDF

RNA-Targeting CRISPR/CasRx system relieves disease symptoms in Huntington's disease models.

Mol Neurodegener

January 2025

Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.

Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.

Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.

View Article and Find Full Text PDF

Nucleus pulposus cell (NPC) senescence contributes to intervertebral disc degeneration (IVDD). However, the underlying molecular mechanisms are not fully understood. In this study, it is demonstrated that angiotensin-converting enzyme 2 (ACE2) counteracted the aging of NPCs and IVDD at the cellular and physiological levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!