Unlabelled: The 5' cap structures of eukaryotic mRNAs are important for RNA stability and protein translation. Many viruses that replicate in the cytoplasm of eukaryotes have evolved 2'-O-methyltransferases (2'-O-MTase) to autonomously modify their mRNAs and carry a cap-1 structure (m7GpppNm) at the 5' end, thereby facilitating viral replication and escaping innate immune recognition in host cells. Previous studies showed that the 2'-O-MTase activity of severe acute respiratory syndrome coronavirus (SARS-CoV) nonstructural protein 16 (nsp16) needs to be activated by nsp10, whereas nsp16 of feline coronavirus (FCoV) alone possesses 2'-O-MTase activity (E. Decroly et al., J Virol 82:8071-8084, 2008, http://dx.doi.org/10.1128/JVI.00407-08; M. Bouvet et al., PLoS Pathog 6:e1000863, 2010, http://dx.doi.org/10.1371/journal.ppat.1000863; E. Decroly et al., PLoS Pathog 7:e1002059, 2011, http://dx.doi.org/10.1371/journal.ppat.1002059; Y. Chen et al., PLoS Pathog 7:e1002294, 2011, http://dx.doi.org/10.1371/journal.ppat.1002294) . In this study, we demonstrate that stimulation of nsp16 2'-O-MTase activity by nsp10 is a universal and conserved mechanism in coronaviruses, including FCoV, and that nsp10 is functionally interchangeable in the stimulation of nsp16 of different coronaviruses. Based on our current and previous studies, we designed a peptide (TP29) from the sequence of the interaction interface of mouse hepatitis virus (MHV) nsp10 and demonstrated that the peptide inhibits the 2'-O-MTase activity of different coronaviruses in biochemical assays and the viral replication in MHV infection and SARS-CoV replicon models. Interestingly, the peptide TP29 exerted robust inhibitory effects in vivo in MHV-infected mice by impairing MHV virulence and pathogenesis through suppressing virus replication and enhancing type I interferon production at an early stage of infection. Therefore, as a proof of principle, the current results indicate that coronavirus 2'-O-MTase activity can be targeted in vitro and in vivo.
Importance: Coronaviruses are important pathogens of animals and human with high zoonotic potential. SARS-CoV encodes the 2'-O-MTase that is composed of the catalytic subunit nsp16 and the stimulatory subunit nsp10 and plays an important role in virus genome replication and evasion from innate immunity. Our current results demonstrate that stimulation of nsp16 2'-O-MTase activity by nsp10 is a common mechanism for coronaviruses, and nsp10 is functionally interchangeable in the stimulation of nsp16 among different coronaviruses, which underlies the rationale for developing inhibitory peptides. We demonstrate that a peptide derived from the nsp16-interacting domain of MHV nsp10 could inhibit 2'-O-MTase activity of different coronaviruses in vitro and viral replication of MHV and SARS-CoV replicon in cell culture, and it could strongly inhibit virus replication and pathogenesis in MHV-infected mice. This work makes it possible to develop broad-spectrum peptide inhibitors by targeting the nsp16/nsp10 2'-O-MTase of coronaviruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524257 | PMC |
http://dx.doi.org/10.1128/JVI.00948-15 | DOI Listing |
Chemistry
December 2024
Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123, Saarbrücken, Germany.
Molecules
October 2024
Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St, Charleston, SC 29425, USA.
Virol Sin
August 2024
State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, 430071, China. Electronic address:
A unique feature of coronaviruses is their utilization of self-encoded nonstructural protein 16 (nsp16), 2'-O-methyltransferase (2'-O-MTase), to cap their RNAs through ribose 2'-O-methylation modification. This process is crucial for maintaining viral genome stability, facilitating efficient translation, and enabling immune escape. Despite considerable advances in the ultrastructure of SARS-CoV-2 nsp16/nsp10, insights into its molecular mechanism have so far been limited.
View Article and Find Full Text PDFSignal Transduct Target Ther
May 2024
State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
Previous studies through targeted mutagenesis of K-D-K-E motif have demonstrated that 2'-O-MTase activity is essential for efficient viral replication and immune evasion. However, the K-D-K-E catalytic motif of 2'-O-MTase is highly conserved across numerous viruses, including flaviviruses, vaccinia viruses, coronaviruses, and extends even to mammals. Here, we observed a stronger 2'-O-MTase activity in SARS-CoV-2 compared to SARS-CoV, despite the presence of a consistently active catalytic center.
View Article and Find Full Text PDFMolecules
May 2024
Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
The ongoing COVID-19 pandemic still threatens human health around the world. The methyltransferases (MTases) of SARS-CoV-2, specifically nsp14 and nsp16, play crucial roles in the methylation of the N7 and 2'-O positions of viral RNA, making them promising targets for the development of antiviral drugs. In this work, we performed structure-based virtual screening for nsp14 and nsp16 using the screening workflow (HTVS, SP, XP) of Schrödinger 2019 software, and we carried out biochemical assays and molecular dynamics simulation for the identification of potential MTase inhibitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!