Unlabelled: To identify host factors relevant for severe acute respiratory syndrome-coronavirus (SARS-CoV) replication, we performed a small interfering RNA (siRNA) library screen targeting the human kinome. Protein kinases are key regulators of many cellular functions, and the systematic knockdown of their expression should provide a broad perspective on factors and pathways promoting or antagonizing coronavirus replication. In addition to 40 proteins that promote SARS-CoV replication, our study identified 90 factors exhibiting an antiviral effect. Pathway analysis grouped subsets of these factors in specific cellular processes, including the innate immune response and the metabolism of complex lipids, which appear to play a role in SARS-CoV infection. Several factors were selected for in-depth validation in follow-up experiments. In cells depleted for the β2 subunit of the coatomer protein complex (COPB2), the strongest proviral hit, we observed reduced SARS-CoV protein expression and a >2-log reduction in virus yield. Knockdown of the COPB2-related proteins COPB1 and Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) also suggested that COPI-coated vesicles and/or the early secretory pathway are important for SARS-CoV replication. Depletion of the antiviral double-stranded RNA-activated protein kinase (PKR) enhanced virus replication in the primary screen, and validation experiments confirmed increased SARS-CoV protein expression and virus production upon PKR depletion. In addition, cyclin-dependent kinase 6 (CDK6) was identified as a novel antiviral host factor in SARS-CoV replication. The inventory of pro- and antiviral host factors and pathways described here substantiates and expands our understanding of SARS-CoV replication and may contribute to the identification of novel targets for antiviral therapy.
Importance: Replication of all viruses, including SARS-CoV, depends on and is influenced by cellular pathways. Although substantial progress has been made in dissecting the coronavirus replicative cycle, our understanding of the host factors that stimulate (proviral factors) or restrict (antiviral factors) infection remains far from complete. To study the role of host proteins in SARS-CoV infection, we set out to systematically identify kinase-regulated processes that influence virus replication. Protein kinases are key regulators in signal transduction, controlling a wide variety of cellular processes, and many of them are targets of approved drugs and other compounds. Our screen identified a variety of hits and will form the basis for more detailed follow-up studies that should contribute to a better understanding of SARS-CoV replication and coronavirus-host interactions in general. The identified factors could be interesting targets for the development of host-directed antiviral therapy to treat infections with SARS-CoV or other pathogenic coronaviruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524262 | PMC |
http://dx.doi.org/10.1128/JVI.01029-15 | DOI Listing |
Background: The development and approval of novel drugs are typically time-intensive and expensive. Leveraging a computational drug repurposing framework that integrates disease-relevant genetically regulated gene expression (GReX) and large longitudinal electronic medical record (EMR) databases can expedite the repositioning of existing medications. However, validating computational predictions of the drug repurposing framework remains a challenge.
View Article and Find Full Text PDFACS Omega
January 2025
School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Accurate drug-target binding affinity (DTA) prediction is crucial in drug discovery. Recently, deep learning methods for DTA prediction have made significant progress. However, there are still two challenges: (1) recent models always ignore the correlations in drug and target data in the drug/target representation process and (2) the interaction learning of drug-target pairs always is by simple concatenation, which is insufficient to explore their fusion.
View Article and Find Full Text PDFVirus Res
January 2025
Molecular Biology and Functional Genomics Platform, National Centre for Scientific and Technical Research (CNRST), Rabat, Morocco; Genomic Centre for Human Pathologies (GENOPATH), Neuroscience and Neurogenetics Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco. Electronic address:
This study investigates the evolution and genetic diversity of SARS-CoV-2 strains circulating in Morocco to track the spread, clade distributions and mutations of the virus across various regions from February 2020 to June 2024. The genome sequences were retrieved from the GISAID database. A total of 2630 SARS-CoV-2 genome sequences were analyzed using bioinformatic tools such as Nextclade, followed by phylogenetic and statistical analyses.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, China. Electronic address:
Nucleoside analogs (NAs), as antiviral drugs, play a significant role in clinical medicine, constituting approximately 50 % of all antiviral therapies in current use. Nucleoside inhibitors function by mimicking the structure of natural nucleosides, integrating themselves into viral genetic material during replication, and subsequently inhibiting the virus's ability to reproduce. They are used to treat a variety of viral infections, including herpes simplex, hepatitis B, and acquired immunodeficiency syndrome (AIDS).
View Article and Find Full Text PDFViruses
January 2025
Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
Second-generation integrase strand transfer inhibitors (INSTIs) are strongly recommended for people living with HIV-1 (PLWH). The emergence of resistance to second-generation INSTIs has been infrequent and has not yet been a major issue in high-income countries. However, the delayed rollouts of these INSTIs in low- to middle-income countries during the COVID-19 pandemic combined with increased transmission of drug-resistant mutants worldwide are leading to an increase in INSTI resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!