Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/522016a | DOI Listing |
Sensors (Basel)
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.
View Article and Find Full Text PDFWe demonstrate a hybrid integrated optical frequency comb amplifier composed of a silicon carbide microcomb and a lithium niobate waveguide amplifier, which generates a 10-dB on-chip gain for the C+L band microcombs under 1480-nm laser pumping and an 8-dB gain under 980-nm laser pumping. It will solve the problem of low output power of microcombs and can be applied in various scenarios such as optical communication, lidar, optical computing, astronomical detection, atomic clocks, and more.
View Article and Find Full Text PDFAn ultra-narrow-linewidth laser is a core device in fields such as optical atomic clocks, quantum communications, and microwave photonic oscillators. This paper reports an ultra-narrow-linewidth self-injection locked semiconductor laser, which is realized through optical feedback from a high-Q (258 million) Fabry-Perot (FP) cavity constructed with three mirrors, generating an output power of 12 mW. Employing a delay self-heterodyne method based on a signal source analyzer, the phase noise of the laser is -129 dBc/Hz at 100 kHz offset frequency, with an intrinsic linewidth of 3 mHz.
View Article and Find Full Text PDFNature
December 2024
Department of Physics and Astronomy, University of California, Los Angeles, CA, USA.
After nearly 50 years of searching, the vacuum ultraviolet Th nuclear isomeric transition has recently been directly laser excited and measured with high spectroscopic precision. Nuclear clocks based on this transition are expected to be more robust than and may outperform current optical atomic clocks. These clocks also promise sensitive tests for new physics beyond the standard model.
View Article and Find Full Text PDFEur Phys J Spec Top
January 2024
Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching, 85748 Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!