What is the central question of this study? Following exercise, hypotension is often reported and syncope is more likely. It is unresolved whether the postexercise hypotension associated with different exercise intensities contributes to the rate at which syncope develops. What is the main finding and its importance? The physiological events that induce presyncope are the same both before and after exercise; however, more intense exercise accelerated the development of hypocapnia, hypotension and, ultimately, syncope. These data indicate that higher intensity exercise induces a postexercise hypotension that reduces cardiovascular reserve, an earlier development of hypocapnia and, ultimately, cerebral hypoperfusion. After exercise, a reduction in mean arterial pressure is often experienced and is referred to as postexercise hypotension. Whilst syncope is more likely following exercise, it is unknown whether orthostatic tolerance is impacted by any exercise intensity-mediated effect on postexercise hypotension. We examined the effect of exercise intensity on time to presyncope, induced via combined head-up tilt and lower body negative pressure following 1 h of cycling at 30 and 70% of heart rate range. Healthy participants (n = 8; mean ± SD, 28 ± 5 years old) completed orthostatic testing to presyncope before and after exercise. Beat-to-beat middle cerebral artery blood flow velocity (MCAv), mean arterial pressure and cerebral oxygenation (measured by near-infrared spectroscopy) were recorded continuously throughout orthostatic testing. During exercise, heart rates were 95 ± 6 and 147 ± 5 beats min(-1) for 30 and 70% heart rate range, respectively, with average power outputs of 103 ± 22 and 221 ± 45 W, respectively. Time to presyncope occurred 32% sooner after the 70% heart rate range trial (952 ± 484 versus 1418 ± 435 s; P = 0.004). Both before and after exercise, presyncope occurred at the same reduction in MCAv (grouped mean, -30 ± 11 cm s(-1) ), mean arterial pressure (-18 ± 13 mmHg), total oxygenation index (-6 ± 2%) and partial pressure of end-tidal CO2 (-16 ± 8 mmHg; all P > 0.1). At presyncope following exercise, the MCAv response was related more to the change in partial pressure of end-tidal CO2 from the baseline preceding orthostatic testing (r(2)  = 0.50, P = 0.01) than to the hypotension (r(2)  = 0.12, P = 0.17). Presyncope both before and after exercise occurred as a result of the same physiological perturbations, albeit greatly accelerated following more intense exercise.

Download full-text PDF

Source
http://dx.doi.org/10.1113/EP085143DOI Listing

Publication Analysis

Top Keywords

exercise
16
postexercise hypotension
16
presyncope exercise
16
arterial pressure
12
70% heart
12
heart rate
12
rate range
12
orthostatic testing
12
exercise intensity
8
intense exercise
8

Similar Publications

A novel exercise protocol for cardiac rehabilitation aerobic (CRA) has been developed by Hebei Sport University, demonstrating efficacy in patients with coronary heart disease (CHD). The objective of this study was to evaluate the impact of CRA on precise cardiac rehabilitation (CR) for CHD patients presenting with stable angina pectoris. The study cohort comprised patients with stable angina who were categorized into three groups: the CRA group (n = 35), the power bicycles (PB) group (n = 34), and the control group (n = 43).

View Article and Find Full Text PDF

Background: Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored.

View Article and Find Full Text PDF

Purpose: To investigate potential mechanisms of a digital rehabilitation intervention associated with improved mobility among adults undertaking rehabilitation.

Materials And Methods: Causal mediation analysis of the AMOUNT trial (ACTRN12614000936628). Participants were randomised to digitally-enabled rehabilitation (virtual reality video games, activity monitors, and handheld computer devices prescribed by a physiotherapist) and usual care or usual care alone.

View Article and Find Full Text PDF

High cardiac sympathetic drive and release of the sympathetic cotransmitter neuropeptide Y (NPY) are significant features of congestive heart failure (CHF), in which resting venous NPY levels are known to be associated with mortality. However, whether circulating NPY levels increase during exercise in CHF when they are already elevated is controversial. We sought to establish the dynamics of circulating NPY levels in CHF patients treated with contemporary medical therapy and devices in relationship to indices of performance linked to long-term prognosis.

View Article and Find Full Text PDF

Involving people with lived experience when setting cerebral palsy research priorities: A scoping review.

Dev Med Child Neurol

January 2025

Cerebral Palsy Alliance Research Institute, Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.

Aim: To describe research priority-setting activities for cerebral palsy (CP) that have been conducted worldwide involving people with lived experience, focusing on participant characteristics, methods employed, identified research priorities, and collaboration as research partners.

Method: The JBI scoping review approach was followed. Six electronic databases and grey literature were searched for all publications up to February 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!