Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin-Helmholtz instability in the shear layer behind the flapping wings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528577PMC
http://dx.doi.org/10.1098/rsif.2015.0119DOI Listing

Publication Analysis

Top Keywords

desert locusts
8
particle image
8
image velocimetry
8
complex aerodynamic
4
aerodynamic footprint
4
footprint desert
4
locusts revealed
4
revealed large-volume
4
large-volume tomographic
4
tomographic particle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!