Agents with vasodilator properties (AVDs) are frequently used in the treatment of acute heart failure (AHF). AVDs rapidly reduce preload and afterload, improve left ventricle to aorta and right ventricle to pulmonary artery coupling, and may improve symptoms. Early biomarker changes after AVD administration have suggested potentially beneficial effects on cardiac stretch, vascular tone, and renal function. AVDs that reduce haemodynamic congestion without causing hypoperfusion might be effective in preventing worsening organ dysfunction. Existing AVDs have been associated with different results on outcomes in randomized clinical trials, and observational studies have suggested that AVDs may be associated with a clinical outcome benefit. Lessons have been learned from past AVD trials in AHF regarding preventing hypotension, selecting the optimal endpoint, refining dyspnoea measurements, and achieving early randomization and treatment initiation. These lessons have been applied to the design of ongoing pivotal clinical trials, which aim to ascertain if AVDs improve clinical outcomes. The developing body of evidence suggests that AVDs may be a clinically effective therapy to reduce symptoms, but more importantly to prevent end-organ damage and improve clinical outcomes for specific patients with AHF. The results of ongoing trials will provide more clarity on the role of AVDs in the treatment of AHF.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ejhf.294DOI Listing

Publication Analysis

Top Keywords

agents vasodilator
8
vasodilator properties
8
acute heart
8
heart failure
8
avds
8
avds associated
8
clinical trials
8
improve clinical
8
clinical outcomes
8
trials
5

Similar Publications

Background: The ionic mechanism underlying Brugada syndrome (BrS) arises from an imbalance in transient outward current flow between the epicardium and endocardium. Previous studies report that artemisinin, originally derived from a Chinese herb for antimalarial use, inhibits the Ito current in canines. In a prior study, we showed the antiarrhythmic effects of artemisinin in BrS wedge preparation models.

View Article and Find Full Text PDF

Objective: Ghrelin is emerging as a promising therapeutic option for heart failure (HF) due to its potent inotropic, anabolic, and cardioprotective properties. This review aims to critically examine the available clinical evidence on ghrelin therapy in HF, while also incorporating key findings from preclinical studies that support its therapeutic potential.

Methods: A comprehensive search was conducted in PubMed and the Cochrane Library up to September 15, 2024, using the keywords "heart failure" and "ghrelin.

View Article and Find Full Text PDF

Oxidative Stress Biomarkers in Hypertension.

Curr Med Chem

January 2025

3rd Department of Cardiology, General Hospital of Thoracic Diseases 'Sotiria', National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.

Arterial hypertension is a silent and progressive disease with deleterious vascular implications on all target organs, including the heart, the brain, the kidneys, and the eyes. Oxidative stress, defined as the overproduction of Reactive Oxygen Species (ROS) over antioxidants, is capable of deteriorating not only the normal endothelial but also the cellular function with further cardiovascular implications. Xanthine oxidase activity, NADPH oxidase overexpression, and ROS production lead to hypertension and high arterial tone, culminating in end-organ damage.

View Article and Find Full Text PDF

Background: Neuroinflammatory responses are strongly associated with the pathogenesis of progressive neurodegenerative conditions and mood disorders. Modulating microglial activation is a potential strategy for developing protective treatments for central nervous system (CNS)-related diseases. Fibrates, widely used in clinical practice as cholesterol-lowering medications, exhibit numerous biological activities, such as anticancer and antiinflammatory activities.

View Article and Find Full Text PDF

Puerarin (PU), a bioactive constituent reported to possess therapeutic effectiveness, but it suffers a drawback of poor bioavailability. In the present study, the PU nanoparticles (PU-NPs) were prepared using solvent-diffusion-evaporation method and optimized using Box-Behnken design (BBD), a response surface methodology for obtaining the optimal material ratio of PU-NPs. Further, PU and PU-NPs were evaluated to assess their cytotoxic effect and in vitro efficiency of inflammatory responses using lipopolysaccharide-sensitive macrophage cell line (RAW264.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!