Diabetes has become a major public health problem and grows rapidly in the most developed countries of the world. Beside genetic and environmental factors, lifestyle habits play an important role in the development and progression of diabetes mellitus. According to the World Health Organization (WHO) about 15% of diabetic patients develop a foot ulcer in need of medical care. Infection is a serious complication and it is the major responsible cause of lower limb amputation. In this paper the possibility to protect from diabetic foot infection with modified cotton socks. Therefore, the socks made of modified cotton yarn by natural minerals and active carbon were investigated in vitro (fabric hand-friction and adsorption) and in vivo (3 IDDM, 4NIDDM, 3 GDM to sweat and fabric hand) to accomplish highest possible level of comfort for diabetic patients. Antimicrobial protection to Gram positive, Gram negative and micro fungi was determined as well. For durability all the characteristics were investigated after 15 washing cycles.

Download full-text PDF

Source

Publication Analysis

Top Keywords

modified cotton
12
protect diabetic
8
diabetic foot
8
foot infection
8
diabetic patients
8
cotton socks--possibility
4
socks--possibility protect
4
diabetic
4
infection diabetes
4
diabetes major
4

Similar Publications

A rare dominant allele determines seed coat color and improves seed oil content in .

Sci Adv

January 2025

College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.

Article Synopsis
  • Yellow seed coat color (SCC) is linked to higher seed oil content (SOC) and lower seed lignocellulose content (SLC), but no dominant yellow SCC genes were previously known.
  • A dominant yellow SCC gene called N53-2 was identified in a study using a double haploid population from N53-2 and a black seed coat material, revealing thousands of expression quantitative trait loci (eQTLs) and specific trans-eQTL hotspots.
  • Transgenic experiments confirmed that the newly discovered allele produces yellow SCC seeds with significantly higher SOC and lower SLC, offering promising prospects for breeding rapeseed with desirable traits.
View Article and Find Full Text PDF

Introduction: Pests are important factors affecting the growth of cotton, and it is a challenge to accurately detect cotton pests under complex natural conditions, such as low-light environments. This paper proposes a low-light environments cotton pest detection method, DCP-YOLOv7x, based on YOLOv7x, to address the issues of degraded image quality, difficult feature extraction, and low detection precision of cotton pests in low-light environments.

Methods: The DCP-YOLOv7x method first enhances low-quality cotton pest images using FFDNet (Fast and Flexible Denoising Convolutional Neural Network) and the EnlightenGAN low-light image enhancement network.

View Article and Find Full Text PDF

Identification of the MAP4K gene family reveals GhMAP4K13 regulates drought and salt stress tolerance in cotton.

Physiol Plant

January 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.

Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) are a class of highly conserved serine/threonine-protein kinases in eukaryotes. They participate in the typical MAPK cascade system and various signal transduction pathways regulating biological processes in plants, during stressful conditions. To date, genome-wide identification of MAP4Ks in cotton has not been reported.

View Article and Find Full Text PDF

Concurrent effects and dynamic wetting abilities of nanometals anchored redox-active Janus nanoarchitectures on cotton fabric for sustainable catalysis and disinfection.

Int J Biol Macromol

December 2024

Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China. Electronic address:

Article Synopsis
  • Designed a new type of catalyst using a unique Lous-leaf-inspired nanoarchitecture that prevents contamination and improves efficiency in disinfection processes.
  • Utilized hydrophilic polydopamine to help create a special coating on cotton fabric that interacts well with contaminants and boosts antibacterial action, all without needing extra chemicals.
  • Achieved over 99% antibacterial effectiveness against E. coli even after multiple washes, demonstrating strong resistance and the ability to tackle common challenges in catalytic reactions.
View Article and Find Full Text PDF

Characterization of the wall-associated kinase (WAK) gene family in Gossypium barbadense reveals the positive role of GbWAK5 in salt tolerance.

Plant Cell Rep

December 2024

State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.

We characterized the WAK gene family in Gossypium barbadense and revealed the potential function of GbWAK5 in regulating salt tolerance by modulating ion homeostasis. Soil salinization is one of the main factors restricting cotton production. Although the role of the wall-associated kinases (WAKs) in plants has been extensively studied, its response to salt stress in sea-island cotton (Gossypium barbadense L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!