Diabetes has become a major public health problem and grows rapidly in the most developed countries of the world. Beside genetic and environmental factors, lifestyle habits play an important role in the development and progression of diabetes mellitus. According to the World Health Organization (WHO) about 15% of diabetic patients develop a foot ulcer in need of medical care. Infection is a serious complication and it is the major responsible cause of lower limb amputation. In this paper the possibility to protect from diabetic foot infection with modified cotton socks. Therefore, the socks made of modified cotton yarn by natural minerals and active carbon were investigated in vitro (fabric hand-friction and adsorption) and in vivo (3 IDDM, 4NIDDM, 3 GDM to sweat and fabric hand) to accomplish highest possible level of comfort for diabetic patients. Antimicrobial protection to Gram positive, Gram negative and micro fungi was determined as well. For durability all the characteristics were investigated after 15 washing cycles.
Download full-text PDF |
Source |
---|
Sci Adv
January 2025
College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
Front Plant Sci
December 2024
School of Software, Henan Institute of Science and Technology, Xinxiang, Henan, China.
Introduction: Pests are important factors affecting the growth of cotton, and it is a challenge to accurately detect cotton pests under complex natural conditions, such as low-light environments. This paper proposes a low-light environments cotton pest detection method, DCP-YOLOv7x, based on YOLOv7x, to address the issues of degraded image quality, difficult feature extraction, and low detection precision of cotton pests in low-light environments.
Methods: The DCP-YOLOv7x method first enhances low-quality cotton pest images using FFDNet (Fast and Flexible Denoising Convolutional Neural Network) and the EnlightenGAN low-light image enhancement network.
Physiol Plant
January 2025
Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) are a class of highly conserved serine/threonine-protein kinases in eukaryotes. They participate in the typical MAPK cascade system and various signal transduction pathways regulating biological processes in plants, during stressful conditions. To date, genome-wide identification of MAP4Ks in cotton has not been reported.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China. Electronic address:
Plant Cell Rep
December 2024
State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
We characterized the WAK gene family in Gossypium barbadense and revealed the potential function of GbWAK5 in regulating salt tolerance by modulating ion homeostasis. Soil salinization is one of the main factors restricting cotton production. Although the role of the wall-associated kinases (WAKs) in plants has been extensively studied, its response to salt stress in sea-island cotton (Gossypium barbadense L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!