Previous studies have rarely examined how temporal dynamic patterns, event-related coherence, and phase-locking are related to each other. This study assessed reaction-time-sorted spectral perturbation and event-related spectral perturbation in order to examine the temporal dynamic patterns in the frontal midline (F), central parietal (CP), and occipital (O) regions during a chemistry working memory task at theta, alpha, and beta frequencies. Furthermore, the functional connectivity between F-CP, CP-O, and F-O were assessed by component event-related coherence (ERCoh) and component phase-locking (PL) at different frequency bands. In addition, this study examined whether the temporal dynamic patterns are consistent with the functional connectivity patterns across different frequencies and time courses. Component ERCoh/PL measured the interactions between different independent components decomposed from the scalp EEG, mixtures of time courses of activities arising from different brain, and artifactual sources. The results indicate that the O and CP regions' temporal dynamic patterns are similar to each other. Furthermore, pronounced component ERCoh/PL patterns were found to exist between the O and CP regions across each stimulus and probe presentation, in both theta and alpha frequencies. The consistent theta component ERCoh/PL between the F and O regions was found at the first stimulus and after probe presentation. These findings demonstrate that temporal dynamic patterns at different regions are in accordance with the functional connectivity patterns. Such coordinated and robust EEG temporal dynamics and component ERCoh/PL patterns suggest that these brain regions' neurons work together both to induce similar event-related spectral perturbation and to synchronize or desynchronize simultaneously in order to swiftly accomplish a particular goal. The possible mechanisms for such distinct component phase-locking and coherence patterns were also further discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454549 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0129019 | PLOS |
Med Biol Eng Comput
January 2025
Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
Performing automatic and standardized 4D TEE segmentation and mitral valve analysis is challenging due to the limitations of echocardiography and the scarcity of manually annotated 4D images. This work proposes a semi-supervised training strategy using pseudo labelling for MV segmentation in 4D TEE; it employs a Teacher-Student framework to ensure reliable pseudo-label generation. 120 4D TEE recordings from 60 candidates for MV repair are used.
View Article and Find Full Text PDFEur J Neurol
January 2025
Department of Neurosurgery, Medical University of Vienna, Vienna, Austria.
Background: Temporal lobe epilepsy (TLE) can lead to structural brain abnormalities, with thalamus atrophy being the most common extratemporal alteration. This study used probabilistic tractography to investigate the structural connectivity between individual thalamic nuclei and the hippocampus in TLE.
Methods: Thirty-six TLE patients who underwent pre-surgical 3 Tesla magnetic resonance imaging (MRI) and 18 healthy controls were enrolled in this study.
Sensors (Basel)
January 2025
Department of Computer Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia.
Traffic flow prediction is a pivotal element in Intelligent Transportation Systems (ITSs) that provides significant opportunities for real-world applications. Capturing complex and dynamic spatio-temporal patterns within traffic data remains a significant challenge for traffic flow prediction. Different approaches to effectively modeling complex spatio-temporal correlations within traffic data have been proposed.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
This research presents an intelligent beam-hopping-based grant-free random access (GFRA) architecture designed for secure Internet of Things (IoT) communications in Low Earth Orbit (LEO) satellite networks. In light of the difficulties associated with facilitating extensive device connectivity while ensuring low latency and high reliability, we present a beam-hopping GFRA (BH-GFRA) scheme that enhances access efficiency and reduces resource collisions. Three distinct resource-hopping schemes, random hopping, group hopping, and orthogonal group hopping, are examined and utilized within the framework.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China.
Early detection of autism spectrum disorder (ASD) is particularly important given its insidious qualities and the high cost of the diagnostic process. Currently, static functional connectivity studies have achieved significant results in the field of ASD detection. However, with the deepening of clinical research, more and more evidence suggests that dynamic functional connectivity analysis can more comprehensively reveal the complex and variable characteristics of brain networks and their underlying mechanisms, thus providing more solid scientific support for computer-aided diagnosis of ASD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!