Fifty Years of Technological Innovation: Potential and Limitations of Current Technologies in Abdominal Magnetic Resonance Imaging and Computed Tomography.

Invest Radiol

From the *Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim at Heidelberg University, Mannheim, Germany; †St John's Medical Center, Tulsa, OK; ‡Division of Biomedical Imaging, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom; §Medical Physics Department of Radiology, University Medical Center Freiburg, Freiburg, Germany; and ∥Department of Radiology, University of Wisconsin, Madison, WI.

Published: September 2015

Magnetic resonance imaging (MRI) has become an important modality for the diagnosis of intra-abdominal pathology. Hardware and pulse sequence developments have made it possible to derive not only morphologic but also functional information related to organ perfusion (dynamic contrast-enhanced MRI), oxygen saturation (blood oxygen level dependent), tissue cellularity (diffusion-weighted imaging), and tissue composition (spectroscopy). These techniques enable a more specific assessment of pathologic lesions and organ functionality. Magnetic resonance imaging has thus transitioned from a purely morphologic examination to a modality from which image-based disease biomarkers can be derived. This fits well with several emerging trends in radiology, such as the need to accurately assess response to costly treatment strategies and the need to improve lesion characterization to potentially avoid biopsy. Meanwhile, the cost-effectiveness, availability, and robustness of computed tomography (CT) ensure its place as the current workhorse for clinical imaging. Although the lower soft tissue contrast of CT relative to MRI is a long-standing limitation, other disadvantages such as ionizing radiation exposure have become a matter of public concern. Nevertheless, recent technical developments such as dual-energy CT or dynamic volume perfusion CT also provide more functional imaging beyond morphology.The aim of this article was to review and discuss the most important recent technical developments in abdominal MRI and state-of-the-art CT, with an eye toward the future, providing examples of their clinical utility for the evaluation of hepatic and renal pathologies.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RLI.0000000000000173DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
12
resonance imaging
12
computed tomography
8
technical developments
8
imaging
6
fifty years
4
years technological
4
technological innovation
4
innovation potential
4
potential limitations
4

Similar Publications

Background And Aims: The laxative lubiprostone has been shown to decrease intestinal permeability. We aimed to assess the safety and efficacy of lubiprostone administered for 48 weeks in patients with metabolic dysfunction-associated steatotic liver disease (MASLD).

Approach And Results: A randomised placebo-controlled trial was conducted in a specialised MASLD outpatient clinic at the National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt.

View Article and Find Full Text PDF

Objective: Neoadjuvant chemotherapy (NACT) has been the primary treatment method for patients with local advanced breast cancer. A pathological complete response (pCR) to therapy correlates with better overall disease prognosis. Magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) have been widely used to monitor the response to NACT in breast cancer.

View Article and Find Full Text PDF

Background: How cerebral microbleeds (CMBs) are formed, and how they cause tissue damage is not fully understood, but it has been suggested they are associated with inflammation, and they could also be related to increased blood-brain barrier (BBB) leakage. We investigated the relationship of CMBs with inflammation and BBB leakage in cerebral small vessel disease, and in particular, whether these 2 processes were increased in the vicinity of CMBs.

Methods: In 54 patients with sporadic cerebral small vessel disease presenting with lacunar stroke, we simultaneously assessed microglial activation using the positron emission tomography ligand [11C]PK11195 and BBB leakage using dynamic contrast enhanced magnetic resonance imaging, on a positron emission tomography-magnetic resonance imaging system.

View Article and Find Full Text PDF

Fluorination of Aza-BODIPY for Cancer Cell Plasma Membrane-Targeted Imaging and Therapy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.

Photodynamic therapy (PDT) holds great potential in cancer treatment, leveraging photosensitizers (PSs) to deliver targeted therapy. Fluorination can optimize the physicochemical and biological properties of PSs for better PDT performance. Here, we report some high-performance multifunctional PSs specifically designed for cancer PDT by fluorinating aza-BODIPY with perfluoro--butoxymethyl (PFBM) groups.

View Article and Find Full Text PDF

Enhanced Protein Immobilization Capacity through Grafting of Poly(sodium methacrylate) onto Magnetic Bead Surface.

Langmuir

January 2025

School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu 211189, P. R. China.

This study aims to improve the signal-to-noise ratio (SNR) of chemiluminescence immunoassay (CLIA) by increasing the amount of protein immobilized on the surface of the magnetic bead (MB). Proteins are macromolecules with three-dimensional structures, and merely increasing the density of functional groups on the two-dimensional surface of the MB cannot significantly enhance protein immobilization. Therefore, we grafted spatially extended functional polymer to not only increase the density of functional groups on the MB surface but also expand their distribution in three-dimensional space, ultimately increasing protein immobilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!