Biological Impact of Transpulmonary Driving Pressure in Experimental Acute Respiratory Distress Syndrome.

Anesthesiology

From the Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (C.S.S., R.S.S., C.L.S., N.S.F., M.B., C.S.N.B.G., P.L.S., P.R.M.R.); Laboratory of Experimental Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (C.L.S.); Radiology Department, National Center of Structural Biology and Image, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (T.B., S.A.L.S.); Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil (V.L.C.); Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (M.M.M.); Rio de Janeiro Federal Institute of Education, Science and Technology, Rio de Janeiro, Brazil (C.S.N.B.G.); University of Minnesota, Minneapolis/Regions Hospital, Pulmonary and Critical Care Medicine, St. Paul, Minnesota (J.J.M.); Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Therapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (M.G.d.A.); and IRCCS AOU San Martino-IST, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy (P.P.).

Published: August 2015

Background: Ventilator-induced lung injury has been attributed to the interaction of several factors: tidal volume (VT), positive end-expiratory pressure (PEEP), transpulmonary driving pressure (difference between transpulmonary pressure at end-inspiration and end-expiration, ΔP,L), and respiratory system plateau pressure (Pplat,rs).

Methods: Forty-eight Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, animals were randomized into combinations of VT and PEEP, yielding three different ΔP,L levels: ΔP,LLOW (VT = 6 ml/kg, PEEP = 3 cm H2O); ΔP,LMEAN (VT = 13 ml/kg, PEEP = 3 cm H2O or VT = 6 ml/kg, PEEP = 9.5 cm H2O); and ΔP,LHIGH (VT = 22 ml/kg, PEEP = 3 cm H2O or VT = 6 ml/kg, PEEP = 11 cm H2O). In other groups, at low VT, PEEP was adjusted to obtain a Pplat,rs similar to that achieved with ΔP,LMEAN and ΔP,LHIGH at high VT.

Results: At ΔP,LLOW, expressions of interleukin (IL)-6, receptor for advanced glycation end products (RAGE), and amphiregulin were reduced, despite morphometric evidence of alveolar collapse. At ΔP,LHIGH (VT = 6 ml/kg and PEEP = 11 cm H2O), lungs were fully open and IL-6 and RAGE were reduced compared with ΔP,LMEAN (27.4 ± 12.9 vs. 41.6 ± 14.1 and 0.6 ± 0.2 vs. 1.4 ± 0.3, respectively), despite increased hyperinflation and amphiregulin expression. At ΔP,LMEAN (VT = 6 ml/kg and PEEP = 9.5 cm H2O), when PEEP was not high enough to keep lungs open, IL-6, RAGE, and amphiregulin expression increased compared with ΔP,LLOW (41.6 ± 14.1 vs. 9.0 ± 9.8, 1.4 ± 0.3 vs. 0.6 ± 0.2, and 6.7 ± 0.8 vs. 2.2 ± 1.0, respectively). At Pplat,rs similar to that achieved with ΔP,LMEAN and ΔP,LHIGH, higher VT and lower PEEP reduced IL-6 and RAGE expression.

Conclusion: In the acute respiratory distress syndrome model used in this experiment, two strategies minimized ventilator-induced lung injury: (1) low VT and PEEP, yielding low ΔP,L and Pplat,rs; and (2) low VT associated with a PEEP level sufficient to keep the lungs open.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ALN.0000000000000716DOI Listing

Publication Analysis

Top Keywords

6 ml/kg peep
20
peep
14
peep 3 cm
12
3 cm h2o
12
il-6 rage
12
transpulmonary driving
8
driving pressure
8
acute respiratory
8
respiratory distress
8
distress syndrome
8

Similar Publications

Heart and lung sharing the same anatomical space are influenced by each other. Spontaneous breathing induces dynamic changes in intrathoracic pressure, impacting cardiac function, particularly the right ventricle. In intensive care units (ICU), mechanical ventilation (MV) and therefore positive end-expiratory pressure (PEEP) are often applied, and this inevitably influences cardiac function.

View Article and Find Full Text PDF

: Attaining adequate oxygenation in critically ill patients undergoing invasive ventilation necessitates intense monitoring through pulse oximetry (SpO) and frequent manual adjustments of ventilator settings like the fraction of inspired oxygen (FiO) and the level of positive end-expiratory pressure (PEEP). Our aim was to compare the quality of oxygenation with the use of automated ventilation provided by INTELLiVENT-Adaptive Support Ventilation (ASV) vs. ventilation that is not automated, i.

View Article and Find Full Text PDF

Prone positioning is a therapeutic strategy for severe Acute Respiratory Distress Syndrome (ARDS). In COVID-19-associated ARDS (CARDS), the application of prone position has shown varying responses, influenced by factors such as lung recruitability and SARS-CoV-2-induced pulmonary endothelial dysfunction. This study aimed to compare the early impact of pronation on lung ventilation-perfusion matching (VQmatch) in CARDS and non-COVID-19 ARDS patients (non-CARDS).

View Article and Find Full Text PDF

Context: Heart rate (HR) is the most vital parameter to assess hemodynamic transition at birth. ECG is considered a gold standard for HR assessment. New devices with dry electrodes are easy to apply on a wet newborn.

View Article and Find Full Text PDF

Introduction: Post-operative pulmonary complications (PPCs) are a significant cause of morbidity following surgery. This study evaluated the effect of intraoperative positive end-expiratory pressure (PEEP) on PPCs in overweight patients undergoing elective laparoscopic hernia surgery.

Patients And Methods: In this randomised controlled trial, 60 patients with a body mass index between 25 and 30 kg/m² were divided equally into a standard PEEP group (5 cm H2O) and a high PEEP group (10 cm H2O).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!