Bigger Is Better: Increasing Cortical Auditory Response Amplitude Via Stimulus Spectral Complexity.

Ear Hear

HEARing Cooperative Research Centre, Victoria, Australia; and National Acoustic Laboratories, New South Wales, Australia.

Published: August 2016

Objective: To determine the influence of auditory stimuli spectral characteristics on cortical auditory evoked potentials (CAEPs).

Design: CAEPs were obtained from 15 normal-hearing adults in response to six multitone (MT), four pure-tone (PT), and two narrowband noise stimuli. The sounds were presented at 10, 20, and 40 dB above threshold, which were estimated behaviorally beforehand. The root mean square amplitude of the CAEP and the detectability of the response were calculated and analyzed.

Results: Amplitudes of the CAEPs to the MT were significantly larger compared with PT for stimuli with frequencies centered around 1, 2, and 4 kHz, whereas no significant difference was found for 0.5 kHz. The objective detection score for the MT was significantly higher compared with the PT. For the 1- and 2-kHz stimuli, the CAEP amplitudes to narrowband noise were not significantly different than those evoked by PT.

Conclusion: The study supports the notion that spectral complexity, not just bandwidth, has an impact on the CAEP amplitude for stimuli with center frequency above 0.5 kHz. The implication of these findings is that the clinical test time required to estimate thresholds can potentially be decreased by using complex band-limited MT rather than conventional PT stimuli.

Download full-text PDF

Source
http://dx.doi.org/10.1097/AUD.0000000000000183DOI Listing

Publication Analysis

Top Keywords

cortical auditory
8
spectral complexity
8
narrowband noise
8
stimuli
6
bigger better
4
better increasing
4
increasing cortical
4
auditory response
4
response amplitude
4
amplitude stimulus
4

Similar Publications

Acoustic-phonetic perception refers to the ability to perceive and discriminate between speech sounds. Acquired impairment of acoustic-phonetic perception is known historically as "pure word deafness" and typically follows bilateral lesions of the cortical auditory system. The extent to which this deficit occurs after unilateral left hemisphere damage and the critical left hemisphere areas involved are not well defined.

View Article and Find Full Text PDF

The 22q11.2 deletion is a risk factor for multiple psychiatric disorders including schizophrenia and also increases vulnerability to middle-ear problems that can cause hearing impairment. Up to 60% of deletion carriers experience hearing impairment and ~30% develop schizophrenia in adulthood.

View Article and Find Full Text PDF

The brain attends to environmental rhythms by aligning the phase of internal oscillations. However, the factors underlying fluctuations in the strength of this phase entrainment remain largely unknown. In the present study we examined whether the strength of low-frequency EEG phase entrainment to rhythmic stimulus sequences varied with pupil size and posterior alpha-band power, thought to reflect arousal level and excitability of posterior cortical brain areas, respectively.

View Article and Find Full Text PDF

Background: Persistent cortical deafness in the pediatric population is rarely reported, and there is limited information on its implications for early intervention.

Objectives: This study aims to (1) conduct a scoping review on pediatric cortical deafness and (2) present a case report of a 7-year-old girl with left unilateral spastic cerebral palsy and cortical deafness resulting from presumed perinatal bilateral stroke.

Methods: A search of PubMed, Scopus, and Web of Science identified 407 manuscripts.

View Article and Find Full Text PDF

A spatial code for temporal information is necessary for efficient sensory learning.

Sci Adv

January 2025

Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, F-75012 Paris, France.

The temporal structure of sensory inputs contains essential information for their interpretation. Sensory cortex represents these temporal cues through two codes: the temporal sequences of neuronal activity and the spatial patterns of neuronal firing rate. However, it is unknown which of these coexisting codes causally drives sensory decisions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!