Neuronal Cx3cr1 Deficiency Protects against Amyloid β-Induced Neurotoxicity.

PLoS One

Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America.

Published: February 2016

Cx3cr1, the receptor for the chemokine Cx3cl1 (fractalkine), has been implicated in the progression and severity of Alzheimer's disease-like pathology in mice, but the underlying mechanisms remain unclear. A complicating factor is that Cx3cr1 has been demonstrated in both neurons and microglia. Here, we have dissected the differences between neuronal and microglial Cx3cr1, specifically by comparing direct amyloid-β-induced toxicity in cultured, mature, microglia-depleted hippocampal neurons from wild-type and Cx3cr1-/- mice. Wild-type neurons expressed both Cx3cl1 and Cx3cr1 and released Cx3cl1 in response to amyloid-β. Knockout of neuronal Cx3cr1 abated amyloid-β-induced lactate dehydrogenase release. Furthermore, amyloid-β differentially induced depression of pre- and postsynaptic components of miniature excitatory postsynaptic currents, in a peptide conformation-dependent manner. Knockout of neuronal Cx3cr1 abated effects of both amyloid-β conformational states, which were differentiable by aggregation kinetics and peptide morphology. We obtained similar results after both acute and chronic treatment of cultured neurons with the Cx3cr1 antagonist F1. Thus, neuronal Cx3cr1 may impact Alzheimer's disease-like pathology by modulating conformational state-dependent amyloid-β-induced synaptotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454597PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0127730PLOS

Publication Analysis

Top Keywords

neuronal cx3cr1
16
cx3cr1
8
alzheimer's disease-like
8
disease-like pathology
8
knockout neuronal
8
cx3cr1 abated
8
neuronal
5
cx3cr1 deficiency
4
deficiency protects
4
protects amyloid
4

Similar Publications

Bulk and single-cell transcriptome revealed the metabolic heterogeneity in human glioma.

Heliyon

January 2025

Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.

Background: Emerging perspectives on tumor metabolism reveal its heterogeneity, a characteristic yet to be fully explored in gliomas. To advance therapies targeting metabolic processes, it is crucial to uncover metabolic differences and identify distinct metabolic subtypes. Therefore, we aimed to develop a classification system for gliomas based on the enrichment levels of four key metabolic pathways: glutaminolysis, glycolysis, the pentose phosphate pathway, and fatty acid oxidation.

View Article and Find Full Text PDF

Excessive iron deposition can lead to ferroptosis, a form of iron-dependent cell death detrimental to neuronal survival. Microglia have been identified as having a high capacity for iron deposition, yet it remains unclear whether microglia undergo ferroptosis while phagocytosing excessive amounts of iron after spinal cord injury (SCI). Here, we observed scattered iron around the epicenter of the injured spinal cord at 7 days post-injury (dpi) in mice, which then accumulated in the lesion core at 14 dpi.

View Article and Find Full Text PDF

The Role of Fractalkine in Diabetic Retinopathy: Pathophysiology and Clinical Implications.

Int J Mol Sci

January 2025

Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan.

Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies.

View Article and Find Full Text PDF

Cpeb1 remodels cell type-specific translational program to promote fear extinction.

Sci Adv

January 2025

Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.

Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex () during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction.

View Article and Find Full Text PDF

The complex pathology of Parkinson's disease (PD) requires comprehensive understanding and multi-pronged interventions for communication between nerve cells. Despite new developments in nanotechnology in the treatment of PD, in-depth exploration of their biological effects, in particular, the specific mechanisms of inflammation inhibition are lacking. Herein, using the stable cascade catalysis channel formed by polydopamine (PDA), imidazole groups, and Cu ions, a microgel system comprising functional monomers [superoxide dismutase (SOD) with double bonds, PDA, 2-methacryloyloxy ethyl phosphorylcholine (MPC), and Cu ions] is proposed for managing PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!