Nickel oxide in the form of nanoparticles (NiO NPs) is extensively used in different industrial branches. In a test on adult zebrafish, the acute toxicity of NiO NPs was shown to be low, however longlasting contact with this compound can lead to its accumulation in the tissues and to increased toxicity. In this work we determined the 30-day toxicity of NiO NPs using a static test for zebrafish Danio rerio. We found the 30-day LC50 value to be 45.0 mg/L, LC100 (minimum concentration causing 100% mortality) was 100.0 mg/L, and LC0 (maximum concentration causing no mortality) was 6.25 mg/L for adult individuals of zebrafish. Considering a broad use of Ni in the industry, NiO NPs chronic toxicity may have a negative impact on the population of aquatic organisms and on food web dynamics in aquatic systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427711 | PMC |
http://dx.doi.org/10.2478/intox-2014-0004 | DOI Listing |
Heliyon
December 2024
Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary.
Currently, the increasing use of nickel metal-organic frameworks (Ni-MOF) and nickel oxide nanoparticles (NiO NPs) has raised concerns regarding their potential environmental impact on wastewater treatment systems. Herein, the responses of aerobic granular sludge (AGS) and algal-bacterial aerobic granular sludge (AB-AGS) to Ni-MOF and NiO NPs were investigated. The results showed that Ni-MOF concentrations of 50, 100, and 200 mg/L significantly reduced nutrient removal in both systems, particularly affecting ammonia, nitrite, and phosphorus removal, while denitrification processes remained stable.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and SOFT Foundry Institute, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
Quantum-dot (QD) light-emitting diodes (QLEDs) are garnering significant attention owing to their superb optoelectrical properties, but the overinjection of electrons compared to holes into the emissive layer (EML) is still a critical obstacle to be resolved. Current approaches, such as inserting a charge-balancing interlayer and mixing p-type organic additives into the EML, face issues of process complexity and poor miscibility. In this work, we demonstrate efficient InP QLEDs by simply embedding NiO nanoparticles (NPs) into the EML which forms a homogeneous QD-metal oxide hybrid EML.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, China. Electronic address:
Heavy metals like nickel (Ni) from anthropogenic activities damage plant growth, posing challenges to agriculture. Melatonin (ME), a potent bio-regulator, has shown promise in alleviating stress induced by heavy metals. However, the mechanisms through which ME alleviates NiO-NPs phytotoxicity remain unclear.
View Article and Find Full Text PDFNanophotonics
June 2024
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan.
The realization of higher coupling strengths between coupled resonant modes enables exploration of compelling phenomena in diverse fields of physics and chemistry. In this study, we focus on the modal coupling between localized surface plasmon resonance (LSPR) of Au nanoparticles (Au-NPs) and Fabry-Pérot mode (p-NiO/Au film). The effects of nanoparticle size, projected surface coverage (PSC), interparticle distance (IPD), and arrangement to the coupling strength between the two modes are theoretically investigated using finite-difference time-domain (FDTD) method.
View Article and Find Full Text PDFPlant Physiol
December 2024
Guangxi Key Laboratory of Agro-environment and Agro-products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning 530004, China.
Nickel oxide nanoparticles (NiO-NPs) pose potential threats to agricultural production. Bacillus subtilis has emerged as a stress-mitigating microbe that alleviates the phytotoxicity caused by NiO-NPs. However, the mechanisms underlying its effectiveness, particularly in root-nodule symbiosis and biological N2-fixation (BNF), remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!