Despite many decades of intensive studies of Yersinia pestis, the causative agent of plague, there is no safe and efficient vaccine against this devastating disease. A recently developed F1/V subunit vaccine candidate, which relies mainly on humoral immunity, showed promising results in animal studies; however, its efficacy in humans still has to be carefully evaluated. In addition, those developing next-generation plague vaccines need to pay particular attention to the importance of eliciting cell-mediated immunity. In this review, we analyzed the current progress in developing subunit, DNA and live carrier platforms of delivery by bacterial and viral vectors, as well as approaches for controlled attenuation of virulent strains of Y. pestis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630923PMC
http://dx.doi.org/10.1038/emi.2012.34DOI Listing

Publication Analysis

Top Keywords

plague vaccines
8
vaccines current
4
current developments
4
developments future
4
future perspectives
4
perspectives despite
4
despite decades
4
decades intensive
4
intensive studies
4
studies yersinia
4

Similar Publications

Live Plague Vaccine Development: Past, Present, and Future.

Vaccines (Basel)

January 2025

Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia.

During the last 100 years, vaccine development has evolved from an empirical approach to one of the more rational vaccine designs where the careful selection of antigens and adjuvants is key to the desired efficacy for challenging pathogens and/or challenging populations. To improve immunogenicity while maintaining a favorable reactogenicity and safety profile, modern vaccine design must consider factors beyond the choice of target antigen alone. With new vaccine technologies currently emerging, it will be possible to custom-design vaccines for optimal efficacy in groups of people with different responses to vaccination.

View Article and Find Full Text PDF

Bacterial ghosts (BGs), non-living empty envelopes of bacteria, are produced either through genetic engineering or chemical treatment of bacteria, retaining the shape of their parent cells. BGs are considered vaccine candidates, promising delivery systems, and vaccine adjuvants. The practical use of BGs in vaccine development for humans is limited because of concerns about the preservation of viable bacteria in BGs.

View Article and Find Full Text PDF

Unlabelled: Respiratory syncytial virus (RSV) infections continue to plague infants, young children, and older individuals worldwide. Since there is no specific treatment for RSV, characterizing the interactions between RSV and host factors remains crucial for the eventual development of robust therapeutic interventions. In our previous study, guanylate binding protein 5 (GBP5) was shown to promote excessive RSV-small hydrophobic (RSV-SH) protein secretion by microvesicles and inhibited viral replication.

View Article and Find Full Text PDF

Plague, caused by , poses a public health threat not only due to sporadic outbreaks across the globe but also due to its potential as a biothreat agent. Ironically, among the seven deadliest pandemics in global history, three were caused by . Pneumonic plague, the more contagious and severe form of the disease, is difficult to contain, requiring either prophylactic antibiotic treatment or vaccination.

View Article and Find Full Text PDF

Two live attenuated vaccines (LAVs), LMA and LMP, were evaluated alone or in combination with a trivalent adenoviral vector-based vaccine (Ad5-YFV) for their efficacy and immune responses in wild type (WT) and interferon gamma (IFNγ) knockout (KO) mice in a C57BL/6 background. While LMA and LMP are triple deletion mutants of CO92 strain, Ad5-YFV incorporates three protective plague immunogens. An impressive 80-100% protection was observed in all vaccinated animals against highly lethal intranasal challenge doses of parental CO92.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!