Purpose: Viscoelastic hemostatic assays are emerging as the standard-of-care in the early detection of post-injury coagulopathy. TEG and ROTEM are most commonly used. Although similar in technique, each uses different reagents, which may affect their sensitivity to detect fibrinolysis. Therefore, the purpose of this study is to determine the ability of each device to detect fibrinolysis.

Methods: TEG (Rapid, Kaolin, Functional Fibrinogen) and ROTEM (EXTEM, INTEM, FIBTEM) were run simultaneously on normal blood as well as blood containing tPA from healthy volunteers (n = 10). A two-tailed, paired t-test and ANOVA were used to determine the significance between parameters obtained from normal blood and blood with tPA, and individual TEG and ROTEM assays, respectively.

Results: TEG detected significant changes in clot strength and 30-min lysis after the addition of tPA (p < 0.0001). All ROTEM assays detected changes in the 30-min lysis (p < 0.0001), but only INTEM detected changes in clot strength (p < 0.05). Kaolin and Rapid TEG assays detected greater changes in clot strength and lysis, but INTEM and EXTEM had decreased lysis onset times compared to TEG (p < 0.001). Functional Fibrinogen and FIBTEM assays detected lysis sooner than other TEG/ROTEM assays, and were comparable.

Conclusions: TEG assays detect greater changes in clot strength compared to ROTEM. Despite this, Functional Fibrinogen and FIBTEM assays detect fibrinolysis sooner than their corresponding intrinsic and extrinsic assays. Therefore, fibrinogen assays should be employed in actively bleeding trauma patients in order to provide timely antifibrinolytic therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5810948PMC
http://dx.doi.org/10.1007/s00068-014-0400-0DOI Listing

Publication Analysis

Top Keywords

changes clot
16
clot strength
16
assays detect
12
detect fibrinolysis
12
functional fibrinogen
12
detected changes
12
assays detected
12
assays
11
viscoelastic hemostatic
8
fibrinogen assays
8

Similar Publications

Previous studies have reported that chronic lymphocytic leukemia (CLL) shows a de novo chromatin activation pattern as compared to normal B cells. Here, we explored whether the level of chromatin activation is related to the clinical behavior of CLL. We identified that in some regulatory regions, increased de novo chromatin activation is linked to clinical progression whereas, in other regions, it is associated with an indolent course.

View Article and Find Full Text PDF

Trauma-induced coagulopathy (TIC) is characterized by dynamic changes in fibrinolysis, which can significantly impact patient outcomes. These changes typically manifest in two phases: hyperfibrinolysis followed by fibrinolysis suppression. In the early stages of TIC, there is often an overwhelming release of tissue plasminogen activator, which leads to excessive fibrinolysis.

View Article and Find Full Text PDF

Background: Endotoxaemia is a common condition in equids, frequently accompanied by alterations in haemostasis. Non-steroidal anti-inflammatory drugs, such as meloxicam, have been proven to alleviate some signs of endotoxaemia in donkeys. Neither the haemostatic response to induced endotoxaemia nor the effect of meloxicam in this regard have been described in donkeys.

View Article and Find Full Text PDF

Background: Effective hemorrhage protocols prioritize immediate hemostatic resuscitation to manage hemorrhagic shock. Prehospital resuscitation using blood products, such as whole blood or alternatively dried plasma in its absence, has the potential to improve outcomes in hemorrhagic shock patients. However, integrating blood products into prehospital care poses substantial logistical challenges due to issues with storage, transport, and administration in field environments.

View Article and Find Full Text PDF

Unlabelled: Group A (GAS) is a major human pathogen that causes several invasive diseases including necrotizing fasciitis. The host coagulation cascade initiates fibrin clots to sequester bacteria to prevent dissemination into deeper tissues. GAS, especially skin-tropic bacterial strains, utilize specific virulence factors, plasminogen binding M-protein (PAM) and streptokinase (SK), to manipulate hemostasis and activate plasminogen to cause fibrinolysis and fibrin clot escape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!