A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Immobilization of carbonic anhydrase on carboxyl-functionalized ferroferric oxide for CO2 capture. | LitMetric

Immobilization of carbonic anhydrase on carboxyl-functionalized ferroferric oxide for CO2 capture.

Int J Biol Macromol

Department of Environmental Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China. Electronic address:

Published: August 2015

New materials of Fe3O4 magnetic microspheres were functionalized with carboxyl and prepared for carbonic anhydrase (CA) immobilization to capture CO2. The optimum conditions for immobilization, such as carrier dose, enzyme dose, pH, shaking speed, temperature and contact time, were determined. The pH and thermal stability of the free and the immobilized CA were compared. The results presented that the immobilized CA had a better enzyme activity, a higher pH and thermal stability than that of the free CA. Meanwhile, CO2 capture was respectively enhanced by the free and the immobilized CA in tris(hydroxymethyl) aminomethane (Tris) buffer solution. Moreover, the immobilized CA maintained 58.5% of its initial catalytic ability even after ten recovery cycles due to the protest of the magnetic microspheres. All the results confirmed the potential use of the carboxyl-functionalized Fe3O4 magnetic microspheres immobilized CA to remove CO2 from air or flue gas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2015.05.051DOI Listing

Publication Analysis

Top Keywords

magnetic microspheres
12
carbonic anhydrase
8
co2 capture
8
fe3o4 magnetic
8
thermal stability
8
stability free
8
free immobilized
8
immobilized
5
immobilization carbonic
4
anhydrase carboxyl-functionalized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!