Heparin is the most widely used anticoagulant drug in the world today. Heparin is currently produced from animal tissues, primarily porcine intestines. A recent contamination crisis motivated development of a non-animal-derived source of this critical drug. We hypothesized that Chinese hamster ovary (CHO) cells could be metabolically engineered to produce a bioengineered heparin, equivalent to current pharmaceutical heparin. We previously engineered CHO-S cells to overexpress two exogenous enzymes from the heparin/heparan sulfate biosynthetic pathway, increasing the anticoagulant activity ∼100-fold and the heparin/heparan sulfate yield ∼10-fold. Here, we explored the effects of bioprocess parameters on the yield and anticoagulant activity of the bioengineered GAGs. Fed-batch shaker-flask studies using a proprietary, chemically-defined feed, resulted in ∼two-fold increase in integrated viable cell density and a 70% increase in specific productivity, resulting in nearly three-fold increase in product titer. Transferring the process to a stirred-tank bioreactor increased the productivity further, yielding a final product concentration of ∼90 μg/mL. Unfortunately, the product composition still differs from pharmaceutical heparin, suggesting that additional metabolic engineering will be required. However, these studies clearly demonstrate bioprocess optimization, in parallel with metabolic engineering refinements, will play a substantial role in developing a bioengineered heparin to replace the current animal-derived drug.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4556170PMC
http://dx.doi.org/10.1002/biot.201400665DOI Listing

Publication Analysis

Top Keywords

bioengineered heparin
12
pharmaceutical heparin
8
heparin/heparan sulfate
8
anticoagulant activity
8
metabolic engineering
8
heparin
7
optimization bioprocess
4
bioprocess conditions
4
conditions improves
4
improves production
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!