Unlabelled: The aim of this systematic review and meta-analysis is to study the utility of the commonly used bone turnover markers in evaluating disease activity in patients with Paget's disease of bone before and after treatment with bisphosphonates. We found good correlation between the bone turnover marker concentrations and disease activity assessed by bone scintigraphy.
Introduction: Paget's disease of bone is a common skeletal disorder of the elderly. Bone turnover marker concentrations are used for diagnosis and follow-up. We aimed to compare the available bone turnover markers and determine their utility in assessing disease activity when compared to quantitative bone scintigraphy.
Methods: We conducted a systematic review and meta-analysis searching MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Scopus. We evaluated total alkaline phosphatase (total ALP), bone-specific alkaline phosphatase (bone ALP), procollagen type 1 amino-terminal propeptide (P1NP), serum, and urine C-terminal telopeptide (uCTx and sCTx, respectively), and urine N-terminal telopeptide (uNTx). The main outcome of interest was the correlation of disease activity with concentrations of bone turnover markers in Paget's disease patients before and after treatment with bisphosphonates. Correlation coefficients were pooled across studies using the random effects model.
Results: We included 17 observational studies and one trial reporting on 953 patients. Prior to treatment, all studied bone turnover markers had moderate to strong correlation with scintigraphic indices (correlation coefficients ranging from 0.58 to 0.80) with no statistically significant difference between the bone turnover markers overall (p = 0.08). P1NP, uNTx, and bone ALP tend to have higher correlation with scintigraphy. After starting treatment with bisphosphonate, there was moderate to strong correlation with disease activity with all markers except bone ALP (correlation coefficients ranging from 0.43 to 0.70).
Conclusion: The findings of this meta-analysis suggest the Paget's disease activity is best monitored by following P1NP levels. However, total ALP, bone ALP, and uNTx are good alternatives as markers of disease activity in untreated patients. Total ALP and uNTx can be useful in following patients with Paget's disease after treatment if P1NP is not available. Clinicians, however, should take availability, cost, and the presence of liver disease into consideration when deciding which bone turnover marker is most appropriate when evaluating patients with Paget's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00198-015-3095-0 | DOI Listing |
Sci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFNat Commun
January 2025
Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.
View Article and Find Full Text PDFCell Signal
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China. Electronic address:
Fractures are common and serious skeletal injuries, and accelerating their healing while alleviating patient suffering remains a clinical challenge. Annexin A2 (ANXA2) is a widely distributed, calcium-dependent, phospholipid-binding protein involved in bone remodeling. However, its role in chondrocyte differentiation and endochondral ossification remains unclear.
View Article and Find Full Text PDFBone
January 2025
ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland.
Osteoporosis is the most common bone metabolic unbalance, leading to fragility fractures, which are known to be associated with structural changes in the bone. Cortical bone accounts for 80 % of the skeleton mass and undergoes remodeling throughout life, leading to changes in its thickness and microstructure. Although many studies quantified the different cortical bone structures using CT techniques (3D), they are often realised on a small number of samples.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory of Stomatology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, 350005 Fuzhou, Fujian, China.
Background: In this study, we prepared a porous gradient scaffold with hydroxyapatite microtubules (HAMT) and chitosan (CHS) and investigated osteogenesis induced by these scaffolds.
Methods: The arrangement of wax balls in the mold can control the size and distribution of the pores of the scaffold, and form an interconnected gradient pore structure. The scaffolds were systematically evaluated and for biocompatibility, biological activity, and regulatory mechanisms.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!