Ultimate osmosis engineered by the pore geometry and functionalization of carbon nanostructures.

Sci Rep

Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.

Published: June 2015

AI Article Synopsis

  • Osmosis is essential for cellular functions and water purification technologies, and membranes with single-atom thickness present a promising avenue for research and application.
  • The study uses molecular dynamics simulations to analyze water and ion transport through carbon nanotube and porous graphene membranes, revealing that carbon nanotubes significantly outperform porous graphene in salt rejection during osmosis.
  • Findings indicate that altering the chemical properties of the membranes can optimize performance, particularly in small-sized pores where organized water flow enhances transport efficiency, paving the way for advanced osmosis membrane designs.

Article Abstract

Osmosis is the key process in establishing versatile functions of cellular systems and enabling clean-water harvesting technologies. Membranes with single-atom thickness not only hold great promises in approaching the ultimate limit of these functions, but also offer an ideal test-bed to explore the underlying physical mechanisms. In this work, we explore diffusive and osmotic transport of water and ions through carbon nanotube and porous graphene based membranes by performing molecular dynamics simulations. Our comparative study shows that the cylindrical confinement in carbon nanotubes offers much higher salt rejection at similar permeability in osmosis compared to porous graphene. Moreover, chemical functionalization of the pores modulates the membrane performance by its steric and electrostatic nature, especially at small-size pores due to the fact that the optimal transport is achieved by ordered water transport near pore edges. These findings lay the ground for the ultimate design of forward osmosis membranes with optimized performance trade-off, given the capability of nano-engineering nanostructures by their geometry and chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4453129PMC
http://dx.doi.org/10.1038/srep10597DOI Listing

Publication Analysis

Top Keywords

porous graphene
8
ultimate osmosis
4
osmosis engineered
4
engineered pore
4
pore geometry
4
geometry functionalization
4
functionalization carbon
4
carbon nanostructures
4
nanostructures osmosis
4
osmosis key
4

Similar Publications

Hierarchical Porous Aggregate-Enabled Chromatography-Inspired Single-Sensor E-Nose for Volatile Monitoring.

ACS Sens

January 2025

School of Chemistry and Molecular Engineering, In Situ Devices Research Center, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China.

Monitoring volatile organic compounds (VOCs) is crucial for ensuring safety and health. In this study, we introduce a strategy to engineer a chromatography-inspired single-sensor (CISS) e-nose tailored for VOC monitoring. This approach overcomes the limitations of traditional methodologies and conventional e-noses.

View Article and Find Full Text PDF

Effects of porous hedgehog-like morphology and graphene oxide on the cycling stability and rate performance of CoO/NiO microspheres.

Nanoscale Horiz

January 2025

Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200438, P. R. China.

A porous hedgehog-like CoO/NiO/graphene oxide (denoted as PHCNO/GO) microsphere was prepared by a facile solvothermal method, followed by an annealing treatment under argon atmosphere. Benefiting from the thin CoO/NiO nanosheets with a large specific surface area, abundant pores distributed between the CoO/NiO nanosheets, and GO firmly wrapped around the surface of PHCNO microspheres, the PHCNO/GO microspheres showed excellent lithium storage performance. The CoO/NiO nanosheets provided numerous active sites, achieving a high reversible specific capacity.

View Article and Find Full Text PDF

Porous carbon nanosheets integrated with graphene-wrapped CoO and CoNx as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries.

J Colloid Interface Sci

January 2025

CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China. Electronic address:

The development of advanced bifunctional oxygen electrocatalysts for the oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) is crucial for the practical application of zinc-air batteries (ZABs). Herein, porous carbon nanosheets integrated with abundant graphene-wrapped CoO and CoNx (CoO/CoNx-C) were successfully fabricated through a simple one-step pyrolysis. With convenient porous channel and large accessible surface, abundant CoO/CoNx species and graphene wrapping structure, CoO/CoNx-C exhibited a half-wave potential of 0.

View Article and Find Full Text PDF

The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.

View Article and Find Full Text PDF

To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three dimensions. The scaffolds were engineered as interpenetrating polymeric networks by the crosslinking reaction of gelatin in the presence of alginate and characterized by structural, morphological, mechanical, swelling properties, porosity, adhesion to the skin tissue, wettability, and in vitro simultaneous release of the active agents. Biocompatibility of the scaffolds were evaluated in vitro by MTT test on fibroblasts (MRC5 cells) and in vivo using assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!