Accuracy assessment of 3D bone reconstructions using CT: an intro comparison.

Med Eng Phys

Bioengineering Laboratory, Roth McFarlane Hand and Upper Limb Centre, St. Joseph's Healthcare, London, Canada; Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Canada. Electronic address:

Published: August 2015

Computed tomography provides high contrast imaging of the joint anatomy and is used routinely to reconstruct 3D models of the osseous and cartilage geometry (CT arthrography) for use in the design of orthopedic implants, for computer assisted surgeries and computational dynamic and structural analysis. The objective of this study was to assess the accuracy of bone and cartilage surface model reconstructions by comparing reconstructed geometries with bone digitizations obtained using an optical tracking system. Bone surface digitizations obtained in this study determined the ground truth measure for the underlying geometry. We evaluated the use of a commercially available reconstruction technique using clinical CT scanning protocols using the elbow joint as an example of a surface with complex geometry. To assess the accuracies of the reconstructed models (8 fresh frozen cadaveric specimens) against the ground truth bony digitization-as defined by this study-proximity mapping was used to calculate residual error. The overall mean error was less than 0.4 mm in the cortical region and 0.3 mm in the subchondral region of the bone. Similarly creating 3D cartilage surface models from CT scans using air contrast had a mean error of less than 0.3 mm. Results from this study indicate that clinical CT scanning protocols and commonly used and commercially available reconstruction algorithms can create models which accurately represent the true geometry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2015.04.010DOI Listing

Publication Analysis

Top Keywords

cartilage surface
8
ground truth
8
commercially reconstruction
8
clinical scanning
8
scanning protocols
8
bone
5
accuracy assessment
4
assessment bone
4
bone reconstructions
4
reconstructions intro
4

Similar Publications

Dimethyl Fumarate attenuates synovial inflammation, reduces nociception, and inhibits the development of post-traumatic osteoarthritis.

Biomed Pharmacother

January 2025

Joseph Maxwell Cleland Atlanta VA Medical Center, Decatur, GA 30033, USA; Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA. Electronic address:

There is currently no cure or disease-modifying treatment for post-traumatic osteoarthritis (PTOA). This study aims to assess the efficacy of dimethyl fumarate (DMF), a US-FDA approved drug for multiple sclerosis, as a treatment for PTOA. PTOA was induced in male Lewis rats by medial meniscal transection (MMT) surgery, and DMF was intra-articularly administered once, one week following surgery.

View Article and Find Full Text PDF

CT arthrography (CTA) for evaluating cartilage defects would be beneficial in clinical practice. Since the contrast medium (CM) volume is often driven by operator experience, the aim was to evaluate the minimum volume of iodinated CM for CTA sufficient to identify iatrogenic cartilage defects in horse fetlock. The study was conducted on ex-vivo 32 distal limbs from adult horses collected at slaughter.

View Article and Find Full Text PDF

Background And Aim: Goupi Plaster (GP) is topical traditional Chinese medicine preparation. It has been used to treat Knee Osteoarthritis (KOA) in clinical practice of traditional Chinese medicine (TCM). However, the mechanisms of GP relieve KOA are poorly understood.

View Article and Find Full Text PDF

Purpose: To quantitatively verify whether degeneration in the quality of the medial femoral cartilage is correlated with muscle volume loss and intramuscular adipose tissue (IntraMAT) infiltration in quadriceps using magnetic resonance imaging (MRI).

Methods: Of the 66 older adult participants ≥60 years old (74.5 ± 6.

View Article and Find Full Text PDF

Background: Microfracture drilling is a surgical technique that involves creating multiple perforations in areas of cartilage defects to recruit stem cells from the bone marrow, thereby promoting cartilage regeneration in the knee joint. Increasing the exposed bone marrow surface area (more holes in the same area) can enhance stem cell outflow. However, when the exposed area is large, it may affect the mechanical strength of the bone at the site of the cartilage defect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!