Transorgan fluxes in a porcine model reveal a central role for liver in acylcarnitine metabolism.

Am J Physiol Endocrinol Metab

Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands;

Published: August 2015

Acylcarnitines are derived from mitochondrial acyl-CoA metabolism and have been associated with diet-induced insulin resistance. However, plasma acylcarnitine profiles have been shown to poorly reflect whole body acylcarnitine metabolism. We aimed to clarify the individual role of different organ compartments in whole body acylcarnitine metabolism in a fasted and postprandial state in a porcine transorgan arteriovenous model. Twelve cross-bred pigs underwent surgery where intravascular catheters were positioned before and after the liver, gut, hindquarter muscle compartment, and kidney. Before and after a mixed meal, we measured acylcarnitine profiles at several time points and calculated net transorgan acylcarnitine fluxes. Fasting plasma acylcarnitine concentrations correlated with net hepatic transorgan fluxes of free and C2- and C16-carnitine. Transorgan acylcarnitine fluxes were small, except for a pronounced net hepatic C2-carnitine production. The peak of the postprandial acylcarnitine fluxes was between 60 and 90 min. Acylcarnitine production or release was seen in the gut and liver and consisted mostly of C2-carnitine. Acylcarnitines were extracted by the kidney. No significant net muscle acylcarnitine flux was observed. We conclude that liver has a key role in acylcarnitine metabolism, with high net fluxes of C2-carnitine both in the fasted and fed state, whereas the contribution of skeletal muscle is minor. These results further clarify the role of different organ compartments in the metabolism of different acylcarnitine species.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00503.2014DOI Listing

Publication Analysis

Top Keywords

acylcarnitine metabolism
16
acylcarnitine
13
acylcarnitine fluxes
12
transorgan fluxes
8
plasma acylcarnitine
8
acylcarnitine profiles
8
body acylcarnitine
8
role organ
8
organ compartments
8
transorgan acylcarnitine
8

Similar Publications

Purpose: Major cardiovascular surgery imposes high physiologic stress, often causing severe organ dysfunction and poor outcomes. The underlying mechanisms remain unclear. This study investigated metabolic changes induced by major cardiovascular surgery and the potential role of identified metabolic signatures in postoperative acute kidney injury (AKI).

View Article and Find Full Text PDF

Background And Aims: Alcohol Use Disorder (AUD) is a psychiatric disorder characterized notably by gut microbial dysbiosis and insufficient dietary fiber intake. This study aims to investigate the effect of dietary fiber placebo-controlled intervention in patients suffering from AUD during a three-week period of alcohol withdrawal, in order to discover microbial-derived metabolites that could be involved in metabolic and behavioral status.

Methods: A randomized, double-blind, placebo-controlled study was performed with 50 AUD patients supplemented with inulin (prebiotic dietary fiber) or maltodextrin (placebo) during 17 days.

View Article and Find Full Text PDF

Metabolic profiles of meconium in preeclamptic and normotensive pregnancies.

Metabolomics

January 2025

Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.

Introduction: Preeclampsia (PE) is a common vascular pregnancy disorder affecting maternal and fetal metabolism with severe immediate and long-term consequences in mothers and infants. During pregnancy, metabolites in the maternal circulation pass through the placenta to the fetus. Meconium, a first stool of the neonate, offers a view to maternal and fetoplacental unit metabolism and could add to knowledge on the effects of PE on the fetus and newborn.

View Article and Find Full Text PDF

Background: Plasma metabolites could be suitable as predictive biomarkers for cardiovascular pathologies or death, thereby improving the prediction of protein biomarkers. The release of acylcarnitines may be altered after coronary artery disease (CAD) in subjects with recurrent clinical outcomes, and this could be used as a prognosis tool.

Methods: Patients with stable coronary artery disease (SCAD) who had suffered an acute coronary syndrome 6-9 months before were followed for up to 4.

View Article and Find Full Text PDF

Simultaneous Activation of Beta-Oxidation and De Novo Lipogenesis in MASLD-HCC: A New Paradigm.

Liver Int

February 2025

Department of Digestive and Hepatobiliary Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France.

Background And Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of hepatocellular carcinoma (HCC). In this study, we combine metabolomic and gene expression analysis to compare HCC tissues with non-tumoural tissues (NTT).

Methods: A non-targeted metabolomic strategy LC-MS was applied to 52 pairs of human MASLD-HCC and NTT separated into 2 groups according to fibrosis severity F0F1-F2 versus F3F4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!