We characterise sleep-like states in cultured neurons and glia during development in vitro as well as after electrical stimulation, the addition of tumor necrosis factor alpha (TNF), and the combination of TNF plus electrical stimulation. We also characterise optogenetic stimulation-induced ATP release and neuronal interleukin-1 and TNF expression in vitro demonstrating the activity dependence of these putative sleep-regulatory substances. Action potential (AP) burstiness, expressed as the burstiness index (BI), synchronization of slow electrical potentials between recording electrodes (SYN), and slow wave (SW) power (0.25-3.75 Hz) determined using fast Fourier analyses emerged as network properties, maturing after 2 weeks in culture. Homologous in vivo measures are used to characterise sleep. Electrical stimulation reduced the BI, SYN and SW power values during and/or after the stimulus period. One day later, homeostasis was evident from rebounds of SYN and SW power values to above baseline levels; the magnitude of the rebound was stimulus pattern-dependent. The addition of TNF enhanced BI, SYN and SW power values, suggesting the induction of a deeper sleep-like state. Electrical stimulation reversed these TNF effects, suggesting the network state was more wake-like. The day after TNF plus electrical stimulation, the changes in SYN and SW power values were dependent upon the stimulus patterns the cells received the day before. We conclude that sleep and wake states in cultured in vitro networks can be controlled and they share molecular regulatory mechanisms with local in vivo networks. Further, sleep is an activity-dependent emergent local network property.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540611PMC
http://dx.doi.org/10.1111/ejn.12968DOI Listing

Publication Analysis

Top Keywords

electrical stimulation
24
syn power
16
power values
16
tumor necrosis
8
necrosis factor
8
sleep-like state
8
state electrical
8
neurons glia
8
states cultured
8
tnf electrical
8

Similar Publications

Adult neurogenesis has most often been studied in the hippocampus and subventricular zone-olfactory bulb, where newborn neurons contribute to a variety of behaviors. A handful of studies have also investigated adult neurogenesis in other brain regions, but relatively little is known about the properties of neurons added to non-canonical areas. One such region is the striatum.

View Article and Find Full Text PDF

Objective: To investigate the effects of testosterone (T) treatment, with or without levothyroxine, the most widely used and least effective medication for managing hypothyroidism, on the functional and histological changes in propylthiouracil (PTU)- induced hypothyroid rat bladders.

Methods: Male rats (n=35) were split into control, hypothyroid, hypothyroid rats treated with levothyroxine (20 µg/kg/day, oral, 2-weeks), hypothyroid rats treated with Sustanon (10 mg/kg,iIM, once/week, 2-weeks), and hypothyroid rats treated with combined treatment groups. Hypothyroidism was induced by PTU (0.

View Article and Find Full Text PDF

Background: Injuries to the common peroneal nerve often result in significant sensory and motor function loss, severely affecting patients' quality of life. Although existing treatments, including medication and surgery, provide some degree of efficacy, their effectiveness is limited by factors such as tolerance and adverse side effects.

Methods: This study aims to evaluate the effects of a 4-week regimen of mirror therapy combined with neuromuscular electrical stimulation on lower limb function, muscle strength, and sensation in patients with common peroneal nerve injuries.

View Article and Find Full Text PDF

Boosting the oxygen reduction activity on metal surfaces by fine-tuning interfacial water with midinfrared stimulation.

Innovation (Camb)

January 2025

International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.

Heterogeneous catalysis at the metal surface generally involves the transport of molecules through the interfacial water layer to access the surface, which is a rate-determining step at the nanoscale. In this study, taking the oxygen reduction reaction on a metal electrode in aqueous solution as an example, using accurate molecular dynamic simulations, we propose a novel long-range regulation strategy in which midinfrared stimulation (MIRS) with a frequency of approximately 1,000 cm is applied to nonthermally induce the structural transition of interfacial water from an ordered to disordered state, facilitating the access of oxygen molecules to metal surfaces at room temperature and increasing the oxygen reduction activity 50-fold. Impressively, the theoretical prediction is confirmed by the experimental observation of a significant discharge voltage increase in zinc-air batteries under MIRS.

View Article and Find Full Text PDF

Photopyroelectric tweezers for versatile manipulation.

Innovation (Camb)

January 2025

Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.

Optical tweezers and related techniques offer extraordinary opportunities for research and applications in physical, biological, and medical fields. However, certain critical requirements, such as high-intensity laser beams, sophisticated electrode designs, additional electric sources, or low-conductive media, significantly impede their flexibility and adaptability, thus hindering their practical applications. Here, we report innovative photopyroelectric tweezers (PPT) that combine the advantages of light and electric field by utilizing a rationally designed photopyroelectric substrate with efficient and durable photo-induced surface charge-generation capability, enabling diverse manipulation in various working scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!