EIF3 is the largest multi-protein complex, and several studies have revealed the oncogenic roles of its subunits in many human cancers. However, the roles of EIF3D in the development and progression of PCa remain uncovered. In the present study, the expression of EIF3D in prostate cancer and paracarcinoma tissues, as well as PCa cell lines, was examined. In PCa tissues, the expression of EIF3D was up-regulated compared to that in paracarcinoma tissues. In order to investigate whether EIF3D could serve as potential therapeutic target for prostate cancer, EIF3D was knocked down to verify its functional role in prostate cancer cells. After EIF3D knockdown in PC-3 and DU145 cells, cell proliferation, invasion and colony formation were significantly inhibited; meanwhile, cell cycle analysis revealed cell cycle arrest at G2/M phase. EIF3D is associated with PCa, and silencing EIF3D will result in decreased proliferation, and migration, as well as G2/M arrest in DU145 and PC-3 cells. These results suggest that EIF3D plays an oncogenic role in PCa development and progression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12032-015-0518-xDOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
cell cycle
12
eif3d
10
oncogenic role
8
eif3d associated
8
development progression
8
expression eif3d
8
paracarcinoma tissues
8
cells eif3d
8
cell
5

Similar Publications

Reply to: Inferior Control Arms in Prostate Cancer Trials: The ARANOTE Trial.

J Clin Oncol

January 2025

Fred Saad, MD, University of Montreal, Montreal, QC, Canada; Egils Vjaters, MD, P. Stradinš Clinical University Hospital, Riga, Latvia; Isabella Testa, MD, Bayer S.p.A, Milan, Italy; and Kunhi Parambath Haresh, MD, All India Institute of Medical Sciences, New Delhi, India.

View Article and Find Full Text PDF

Inferior Control Arms in Prostate Cancer Trials: The ARANOTE Trial.

J Clin Oncol

January 2025

Abhenil Mittal, MD, DM, MBBS and Geordie Linford, MD, MSc, BSc, Department of Oncology, Northeast Cancer Center, Health Sciences North, Sudbury, ON, Canada, Division of Clinical Sciences, Northern Ontario School of Medicine, ON, Canada; and Bishal Gyawali, MD, PhD, FASCO, Department of Oncology, Queen's University, Kingston, ON, Canada, Department of Public Health Sciences, Queen's University, Kingston, ON, Canada, Division of Cancer Care and Epidemiology, Queen's University, Kingston, ON, Canada.

View Article and Find Full Text PDF

Background: Prostate cancer remains the most frequent cancer among men, representing a significant health burden. Despite its high morbidity and mortality rates, the etiology of prostate cancer remains relatively unknown, with only non-modifiable established risk factors. Chronic inflammation has emerged as a potential factor in prostate carcinogenesis.

View Article and Find Full Text PDF

Precise surgical resection of prostate cancer (PCa) is a significant clinical challenge due to the impact of positive surgical margins on postoperative outcomes. Fluorescence-guided surgery (FGS) enables real-time tumor visualization using fluorescent probes. In this study, we synthesized and evaluated an indocyanine green (ICG)-based PSMA-targeted near-infrared probe, , for intraoperative imaging of PCa lesions.

View Article and Find Full Text PDF

Advancements in molecular imaging probes for precision diagnosis and treatment of prostate cancer.

J Zhejiang Univ Sci B

January 2025

Department of Orthopedics, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.

Prostate cancer is the second most common cancer in men, accounting for 14.1% of new cancer cases in 2020. The aggressiveness of prostate cancer is highly variable, depending on its grade and stage at the time of diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!