Background: EGFR, a receptor tyrosine kinase (RTK), is frequently overexpressed and mutated in non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs) have been widely used in the treatment of many cancers, including NSCLC. However, intrinsic and acquired resistance to TKI remains a common obstacle. One strategy that may help overcome EGFR-TKI resistance is to target EGFR for degradation. As EGFR is a client protein of heat-shock protein 90 (HSP90) and sulforaphane is known to functionally regulate HSP90, we hypothesized that sulforaphane could attenuate EGFR-related signaling and potentially be used to treat NSCLC.
Results: Our study revealed that sulforaphane displayed antitumor activity against NSCLC cells both in vitro and in vivo. The sensitivity of NSCLC cells to sulforaphane appeared to positively correlate with the inhibition of EGFR-related signaling, which was attributed to the increased proteasomal degradation of EGFR. Combined treatment of NSCLC cells with sulforaphane plus another HSP90 inhibitor (17-AAG) enhanced the inhibition of EGFR-related signaling both in vitro and in vivo.
Conclusions: We have shown that sulforaphane is a novel inhibitory modulator of EGFR expression and is effective in inhibiting the tumor growth of EGFR-TKI-resistant NSCLC cells. Our findings suggest that sulforaphane should be further explored for its potential clinical applications against NSCLC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451877 | PMC |
http://dx.doi.org/10.1186/s12929-015-0139-x | DOI Listing |
Discov Nano
January 2025
Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany.
Metastatic cancer cells undergo metabolic reprogramming, which involves changes in the metabolic fluxes, including endocytosis, nucleocytoplasmic transport, and mitochondrial metabolism, to satisfy their massive demands for energy, cell division, and proliferation compared to normal cells. We have previously demonstrated the ability of two different types of compounds to interfere with linchpins of metabolic reprogramming, Pitstop-2 and 1,6-hexanediol (1,6-HD). 1,6-HD disrupts glycolysis enzymes and mitochondrial function, enhancing reactive oxygen species production and reducing cellular ATP levels, while Pitstop-2 impedes clathrin-mediated endocytosis and small GTPases activity.
View Article and Find Full Text PDFMol Carcinog
January 2025
Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
Vacuolar protein sorting 45 (VPS45) has recently been implicated in the development of ovarian cancer and non-small cell lung cancer. However, its role in the onset and progression of hepatocellular carcinoma (HCC) remains unclear. This study aims to elucidate the function of VPS45 in HCC.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
This study reports a simple and rapid aptamer-based sensor platform designed for the sensitive and selective detection of human non-small cell lung cancer (NSCLC) cells. Under standard conditions, gold nanoparticles (AuNPs) remain dispersed and exhibit a characteristic peak at 520 nm. However, the addition of sodium chloride (NaCl) destabilizes the charge of the solution, leading to the aggregation of AuNPs.
View Article and Find Full Text PDFOnco Targets Ther
January 2025
Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China.
Lung cancer is a malignant tumor with high morbidity and mortality in China and worldwide. Once it metastasizes to the brain, its prognosis is very poor. Brain metastases are found in about 20% of newly diagnosed non-small-cell lung cancer (NSCLC) patients.
View Article and Find Full Text PDFHeliyon
January 2025
Science and Technology Academic Department of Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China.
Background: Non-small cell lung cancer (NSCLC), which accounts for about 85 % of all lung cancers, currently exhibits insensitivity to most treatment regimens. Therefore, the identification of new and effective biomarkers for NSCLC is crucial for the development of treatment strategies. Immunogenic cell death (ICD), a form of regulated cell death capable of activating adaptive immune responses and generating long-term immune memory, holds promise for enhancing anti-tumor immunity and offering promising prospects for immunotherapy strategies in NSCLC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!