Human eyes move continuously, even during visual fixation. These "fixational eye movements" (FEMs) include microsaccades, intersaccadic drift and oculomotor tremor. Research in human FEMs has grown considerably in the last decade, facilitated by the manufacture of noninvasive, high-resolution/speed video-oculography eye trackers. Due to the small magnitude of FEMs, obtaining reliable data can be challenging, however, and depends critically on the sensitivity and precision of the eye tracking system. Yet, no study has conducted an in-depth comparison of human FEM recordings obtained with the search coil (considered the gold standard for measuring microsaccades and drift) and with contemporary, state-of-the art video trackers. Here we measured human microsaccades and drift simultaneously with the search coil and a popular state-of-the-art video tracker. We found that 95% of microsaccades detected with the search coil were also detected with the video tracker, and 95% of microsaccades detected with video tracking were also detected with the search coil, indicating substantial agreement between the two systems. Peak/mean velocities and main sequence slopes of microsaccades detected with video tracking were significantly higher than those of the same microsaccades detected with the search coil, however. Ocular drift was significantly correlated between the two systems, but drift speeds were higher with video tracking than with the search coil. Overall, our combined results suggest that contemporary video tracking now approaches the search coil for measuring FEMs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4452707 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0128428 | PLOS |
J Magn Reson Imaging
January 2025
Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Background: Quantitative Susceptibility Mapping (QSM) provides a non-invasive post-processing method to investigate alterations in magnetic susceptibility (χ), reflecting iron content within brain regions implicated in neurodegenerative diseases (NDDs).
Purpose: To investigate alterations in thalamic χ in patients with NDDs using QSM.
Study Type: Systematic review and meta-analysis.
Biomed Res Int
January 2025
Center for Personalized Nanomedicine, Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia.
Environmental pollution has been a significant concern for the last few years. The leather industry significantly contributes to the economy but is one of Bangladesh's most prominent polluting industries. It is also responsible for several severe diseases such as cancer, lung diseases, and heart diseases of leather workers because they use bleaching agents and chemicals, and these have numerous adverse effects on human health.
View Article and Find Full Text PDFLung
January 2025
Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan.
Front Bioeng Biotechnol
December 2024
Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
Introduction: Magnetic nanoparticles (MNPs), particularly iron oxide nanoparticles (IONPs), are renowned for their superparamagnetic behavior, allowing precise control under external magnetic fields. This characteristic makes them ideal for biomedical applications, including diagnostics and drug delivery. Superparamagnetic IONPs, which exhibit magnetization only in the presence of an external field, can be functionalized with ligands for targeted affinity diagnostics.
View Article and Find Full Text PDFInterv Neuroradiol
December 2024
Department of Neurosurgery, Clinical Neuroscience Center, University of Utah, Salt Lake City, UT, USA.
Background: The integration of robotics into neuroendovascular surgery has the potential to revolutionize the field by enhancing precision, reducing procedure-related risks, and improving patient outcomes. The CorPath GRX system represents a significant advancement in this domain. In this systematically conducted scoping review, we explore the current applications, advances, and challenges associated with robot-assisted neuroendovascular surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!