Facultative parthenogenesis in a critically endangered wild vertebrate.

Curr Biol

School of Marine and Atmospheric Science, Stony Brook University, Stony Brook, NY 11794, USA. Electronic address:

Published: June 2015

Facultative parthenogenesis - the ability of sexually reproducing species to sometimes produce offspring asexually - is known from a wide range of ordinarily sexually reproducing vertebrates in captivity, including some birds, reptiles and sharks [1-3]. Despite this, free-living parthenogens have never been observed in any of these taxa in the wild, although two free-living snakes were recently discovered each gestating a single parthenogen - one copperhead (Agkistrodon contortrix) and one cottonmouth (Agkistrodon piscivorus) [1]. Vertebrate parthenogens are characterized as being of the homogametic sex (e.g., females in sharks, males in birds) and by having elevated homozygosity compared to their mother [1-3], which may reduce their viability [4]. Although it is unknown if either of the parthenogenetic snakes would have been carried to term or survived in the wild, facultative parthenogenesis might have adaptive significance [1]. If this is true, it is reasonable to hypothesize that parthenogenesis would be found most often at low population density, when females risk reproductive failure because finding mates is difficult [5]. Here, we document the first examples of viable parthenogens living in a normally sexually reproducing wild vertebrate, the smalltooth sawfish (Pristis pectinata). We also provide a simple approach to screen any microsatellite DNA database for parthenogens, which will enable hypothesis-driven research on the significance of vertebrate parthenogenesis in the wild.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2015.04.018DOI Listing

Publication Analysis

Top Keywords

facultative parthenogenesis
12
sexually reproducing
12
wild vertebrate
8
wild
5
parthenogenesis critically
4
critically endangered
4
endangered wild
4
vertebrate
4
vertebrate facultative
4
parthenogenesis
4

Similar Publications

Facultatively parthenogenetic animals could help reveal the role of sexual conflict in the evolution of sex. Although each female can reproduce both sexually (producing sons and daughters from fertilized eggs) and asexually (typically producing only daughters from unfertilized eggs), these animals often form distinct sexual and asexual populations. We hypothesized that asexual populations are maintained through female resistance as well as the decay of male traits.

View Article and Find Full Text PDF

Facultative parthenogenesis (FP), or asexual reproduction by sexually reproducing female animals, has been reported across several clades of vertebrates and is increasingly being recognized as a reproductive mechanism with significant implications for the genetic variation of captive and wild populations. The definitive identification of parthenogens requires molecular confirmation, with large genomic datasets necessary to accurately parse the parthenogenetic mechanism (i.e.

View Article and Find Full Text PDF

Over the past several decades, facultative parthenogenesis (FP)-the ability of a sexually reproducing species to reproduce asexually-in vertebrates has been removed from the realm of obscurity and placed firmly in a position where it warrants focused scientific attention. Likely fueled by increased recognition of the trait, the availability of molecular tools capable of disentangling FP from long-term sperm storage, and the availability of potential cases originating from both zoological and private collections, a wealth of papers has been published revealing the diversity of vertebrate systems in which FP occurs. Specifically, cases have been reported in squamate reptiles (lizards and snakes), crocodiles, birds, and elasmobranch fishes (sharks, rays, and skates).

View Article and Find Full Text PDF

The mode of reproduction most often seen in snakes is sexual, but studies have noted facultative parthenogenesis in at least six families. Here, we provide evidence for the first observed case of facultative parthenogenesis in a captive Jamaican boa (Chilabothrus subflavus). A 7-year-old female Jamaican boa, isolated since birth, was found to have produced a litter of 15 offspring.

View Article and Find Full Text PDF

Does ecology shape geographical parthenogenesis? Evidence from the facultatively parthenogenetic stick insect .

Ecol Evol

August 2024

Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences UNSW Sydney Sydney New South Wales Australia.

Closely related sexual and parthenogenetic species often show distinct distribution patterns, known as geographical parthenogenesis. Similar patterns, characterized by the existence of separate sexual and parthenogenetic populations across their natural range, can also be found in facultative parthenogens - species in which every female is capable of both sexual and parthenogenetic reproduction. The underlying mechanisms driving this phenomenon in nature remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!