Mitotic slippage and expression of survivin are linked to differential sensitivity of human cancer cell-lines to the Kinesin-5 inhibitor monastrol.

PLoS One

Department of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Published: April 2016

The mitotic Kinesin-5 motor proteins crosslink and slide apart antiparallel spindle microtubules, thus performing essential functions in mitotic spindle dynamics. Specific inhibition of their function by monastrol-like small molecules has been examined in clinical trials as anticancer treatment, with only partial success. Thus, strategies that improve the efficiency of monastrol-like anticancer drugs are required. In the current study, we examined the link between sensitivity to monastrol and occurrence of mitotic slippage in several human cell-lines. We found that the rank of sensitivity to monastrol, from most sensitive to least sensitive, is: AGS > HepG2 > Lovo > Du145 ≥ HT29. We show correlation between the sensitivity of a particular cell-line to monastrol and the tendency of the same cell-line to undergo mitotic slippage. We also found that in the monastrol resistant HT29 cells, prolonged monastrol treatments increase mRNA and protein levels of the chromosomal passenger protein survivin. In contrast, survivin levels are not increased by this treatment in the monastrol-sensitive AGS cells. We further show that over-expression of survivin in the monastrol-sensitive AGS cells reduces mitotic slippage and increases resistance to monastrol. Finally, we show that during short exposure to monastrol, Si RNA silencing of survivin expression reduces cell viability in both AGS and HT29 cells. Our data suggest that the efficiency of anti-cancer treatment with specific kinesin-5 inhibitors may be improved by modulation of expression levels of survivin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4452773PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0129255PLOS

Publication Analysis

Top Keywords

mitotic slippage
16
monastrol
8
sensitivity monastrol
8
ht29 cells
8
monastrol-sensitive ags
8
ags cells
8
mitotic
6
survivin
6
slippage expression
4
expression survivin
4

Similar Publications

SUMOylation, the modification of proteins with a small ubiquitin-like modifier (SUMO), is known to regulate various cellular events, including cell division. This process is dynamic, with its status depending on the balance between SUMOylation and deSUMOylation. While the regulation of cell division by sentrin-specific protease (SENP) family proteins through deSUMOylation has been investigated, the role of another deSUMOylase, deSUMOylating isopeptidase 1 (DESI1), remains unknown.

View Article and Find Full Text PDF

TNK2 is a ubiquitously expressed nonreceptor-type tyrosine kinase. TNK2 participates in tumorigenesis, and TNK2 activation has been found in various cancers; therefore, TNK2 is a promising target for cancer chemotherapy. While the TNK2 inhibitor XMD16-5 is highly selective, it inhibits cytokinesis at higher concentrations by targeting Aurora B kinase, a key enzyme for cell division.

View Article and Find Full Text PDF

Targeting Mitotic Exit in Malignant Cells.

Methods Mol Biol

November 2024

Faculty of Medicine, Department of Medicine I, Medical Center, University of Freiburg, Freiburg, Germany.

In order to sustain genomic stability by correct DNA replication and mitosis and thus avoid malignant transformation of cells, the cell cycle is a strictly regulated process. Aberrant cell cycle regulation and defects in mitosis in malignant cells are targets of various cancer therapies. Cancer cells may survive antimitotic treatment due to mitotic slippage with a residual activity of the ubiquitin ligase anaphase-promoting complex (APC/C) and a continuous slow ubiquitin-proteasome-dependent cyclin B-degradation leading to mitotic exit.

View Article and Find Full Text PDF

Regulated start-codon selection has the potential to reshape the proteome through the differential production of upstream open reading frames, canonical proteins, and alternative translational isoforms. However, conditions under which start codon selection is altered remain poorly defined. Here, using transcriptome-wide translation-initiation-site profiling, we reveal a global increase in the stringency of start-codon selection during mammalian mitosis.

View Article and Find Full Text PDF

Fludioxonil, an antifungal agent used as a pesticide, leaves a measurable residue in fruits and vegetables. It has been identified to cause endocrine disruption, interrupt normal development, and cause various diseases such as cancers. In this study, fludioxonil was examined for its effects on the development and metastasis of breast cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!