Tau stabilizes microtubules by binding at the interface between tubulin heterodimers.

Proc Natl Acad Sci U S A

Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen, 37077 Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center, 37075 Göttingen, Germany

Published: June 2015

The structure, dynamic behavior, and spatial organization of microtubules are regulated by microtubule-associated proteins. An important microtubule-associated protein is the protein Tau, because its microtubule interaction is impaired in the course of Alzheimer's disease and several other neurodegenerative diseases. Here, we show that Tau binds to microtubules by using small groups of evolutionary conserved residues. The binding sites are formed by residues that are essential for the pathological aggregation of Tau, suggesting competition between physiological interaction and pathogenic misfolding. Tau residues in between the microtubule-binding sites remain flexible when Tau is bound to microtubules in agreement with a highly dynamic nature of the Tau-microtubule interaction. By binding at the interface between tubulin heterodimers, Tau uses a conserved mechanism of microtubule polymerization and, thus, regulation of axonal stability and cell morphology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475932PMC
http://dx.doi.org/10.1073/pnas.1504081112DOI Listing

Publication Analysis

Top Keywords

binding interface
8
interface tubulin
8
tubulin heterodimers
8
tau
7
tau stabilizes
4
microtubules
4
stabilizes microtubules
4
microtubules binding
4
heterodimers structure
4
structure dynamic
4

Similar Publications

Cell-free systems are powerful synthetic biology technologies that can recapitulate gene expression and sensing without the complications of living cells. Cell-free systems can perform more advanced functions when genetic circuits are incorporated. Here we expand cell-free biosensing by engineering a highly specific isothermal amplification circuit called polymerase strand recycling (PSR), which leverages T7 RNA polymerase off-target transcription to recycle nucleic acid inputs within DNA strand displacement circuits.

View Article and Find Full Text PDF

Structural determinants of peanut induced anaphylaxis.

J Allergy Clin Immunol

January 2025

Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN; Department of Pharmacology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN. Electronic address:

Background: Human monoclonal IgE antibodies recognizing peanut allergens have recently become available, but we lack a detailed understanding of how these IgEs target allergens.

Objective: To determine the molecular details of the antibody-allergen interaction for a panel of clinically important human IgE monoclonal antibodies and to develop strategies to disrupt disease causing antibody-allergen interactions.

Methods: We identified candidates from a panel of epitope binned human IgE monoclonals that recognize two important and homologous peanut allergens, Ara h 2 and Ara h 6.

View Article and Find Full Text PDF

Microenvironment Remodeling Microgel Repairs Degenerated Intervertebral Disc via Programmed Delivery of MicroRNA-155.

ACS Appl Mater Interfaces

January 2025

Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

The progression of intervertebral disc degeneration (IVDD) is associated with increased cell apoptosis and reduced extracellular matrix (ECM) production, both of which are driven by ongoing inflammation. Thus, alleviating the acidic inflammatory microenvironment and mitigating the apoptosis of nucleus pulposus cells (NPCs) are essential for intervertebral disc (IVD) regeneration. Regulating pH levels in the local environment can reduce inflammation and promote tissue recovery.

View Article and Find Full Text PDF

RNA recognition motifs (RRMs) are a key class of proteins that primarily bind single-stranded RNAs. In this study, we applied standard atomistic molecular dynamics simulations to obtain insights into the intricate binding dynamics between uridine-rich RNAs and TbRGG2 RRM using the recently developed OL3-Stafix AMBER force field, which improves the description of single-stranded RNA molecules. Complementing structural experiments that unveil a primary binding mode with a single uridine bound, our simulations uncover two supplementary binding modes in which adjacent nucleotides encroach upon the binding pocket.

View Article and Find Full Text PDF

This study explores the use of chicken egg white (EW), a rich source of natural proteins, to address challenges in wound healing management. Herein, a novel Zn-infused EW/GelMA (EW/Gel) hybrid hydrogel is developed, featuring an interpenetrating network (IPN) structure, where the first network consists of photo-cross-linked GelMA and the second network consists of Zn-infused EW (Zn-EW) through ion-protein binding. By optimizing the design and formulation, the resulting Zn-EW/Gel hydrogel exhibited enhanced mechanical stability and self-adhesive properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!