AI Article Synopsis

  • This study investigates how cobalt nanoparticles affect osteoclasts, focusing on their toxicity and biological activity in relation to bone loss (osteolysis).
  • Methods included culturing RAW 264.7 monocyte-macrophages and inducing them to become osteoclast-like cells, followed by testing the toxicity of cobalt nanoparticles and cobalt chloride at various concentrations and times using the MTT test and Q-PCR to measure mRNA expression.
  • Findings revealed that cobalt nanoparticles inhibit osteoclast proliferation at most concentrations, but surprisingly improve the expression of specific markers (CA II and Cat K) at 10-50 μM concentrations, highlighting their complex biological effects.

Article Abstract

Objective: To explore the toxicity and biological activity of cobalt nanoparticles on the osteoclasts. Analyze the relationship between cobalt nanoparticles and osteolysis.

Methods: Monocyte-macrophages (RAW 264.7) was cultured in vitro, osteoclast-like cells were induced by lipopolysaccharides (LPS). After RAW 264.7 was induced for 24 h, Methyl Thiazolium Tetrazolium (MTT) biological toxicity test of osteoclast-like cell was preceded using Cobalt nanoparticles (set 4 concentrations: 10, 20, 50, 100 μM) and cobalt chloride (set 4 concentrations: 10, 20, 50, 100 μM) at 2, 4, 8, 24 and 48 h respectively. The relative expression of mRNA of CA II and Cat K after RAW 264.7 induction was determined by Q-PCR.

Results: mRNA relative expression of CA II, Cat K were reduced at multiple concentrations both cobalt nanoparticles and cobalt chloride, and was time and concentration dependent, cobalt nanoparticles are more significant than cobalt chloride group. But when the cobalt nanoparticles concentration is in 10-50 μM, the mRNA relative expression of CA II, Cat K increased.

Conclusion: Cobalt nanoparticles have biological toxicity. At multiple concentrations, the differentiation and proliferation of osteoclasts was inhibited, but when the concentration of cobalt nanoparticles is in 10-50 μM, it has been strengthened.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6583723PMC
http://dx.doi.org/10.1111/os.12180DOI Listing

Publication Analysis

Top Keywords

cobalt nanoparticles
36
cobalt
12
raw 2647
12
cobalt chloride
12
relative expression
12
nanoparticles
9
biological toxicity
8
set concentrations
8
concentrations 100 μm
8
mrna relative
8

Similar Publications

This article is devoted to the development of a new method for the synthesis of magnetic cobalt boride nanoparticles using a low-energy approach. The obtained nanoparticles were used to create composite materials based on industrial thermoplastic ABS. The effect of different concentrations of nanoparticles on the physical, mechanical, magnetic, and dielectric properties of composite materials was studied.

View Article and Find Full Text PDF

Malic acid-derived polyamides, polyhydrazides, and hydrazides exhibit strong potential for a variety of biological applications. This study demonstrates the synthesis of cobalt, silver, copper, zinc, and iron particles by a facile chemical reduction approach utilizing malic acid-derived polyamides, polyhydrazides, and hydrazides as stabilizing and reducing agents. Comprehensive characterization of the particles was performed using UV-Vis spectroscopy, FTIR, XRD, SEM, and EDX analysis.

View Article and Find Full Text PDF

Novel Co-MOF-doped gelatin/agar intelligent film for beef freshness visual tracking based on the structural change of ZIF-67 under ammonia etching effect.

Int J Biol Macromol

January 2025

Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi University for Nationalities, Nanning, Guangxi 530008, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

It is an important task to construct intelligent packaging for meat freshness monitoring with good color stability and indication function. Herein, cobalt-based metal-organic framework nanomaterials (Co-MOF, ZIF-67) with antimicrobial and ammonia-sensitive properties were successfully synthesized and added into gelatin/agar (GA) matrix to develop highly stable intelligent films (GA/ZIF67). The incorporation of ZIF-67 nanoparticles enhanced the hydrophobicity (water contact angle >90°) and UV-blocking properties (close to 0.

View Article and Find Full Text PDF

Cobalt-doped zinc oxide nanoparticles were fabricated and examined in this study as a potential photocatalyst for the antibiotic ciprofloxacin (CIPF) degradation when exposed to visible LED light. The Co-precipitation technique created Cobalt-doped zinc oxide nanoparticles that were 5, 10, and 15% Co-loaded. Different known techniques have been used to characterize the synthesized ZnO and cobalt-doped ZnO nanoparticles.

View Article and Find Full Text PDF

Covalent Grafting of Graphene Quantum Dots onto Stepped TiO-Mediated Electronic Modulation for Electrocatalytic Hydrogen Evolution.

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou 225002, China.

The interaction between electrocatalytic active centers and their support is essential to the electrocatalytic performance, which could regulate the electronic structure of the metal centers but requires precise design. Herein, we report on covalent grafting of graphene quantum dots (GQDs) on stepped TiO as a support to anchoring cobalt phosphide nanoparticles (CoP/GQD/S-TiO) for electrocatalytic hydrogen evolution reaction (HER). The covalent ester bonds between GQDs and TiO endow enlarged anchoring sites to achieve highly dispersed electroactive CoP nanoparticles but, more importantly, provide an efficient electron-transfer pathway from TiO to GQDs which could regulate the electronic structure of CoP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!