Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Leishmania infantum is a protozoan of the trypanosomatid family causing visceral leishmaniasis. Leishmania parasites are transmitted by the bite of phlebotomine sand flies to the human host and are phagocyted by macrophages. The parasites synthesize N1-N8-bis(glutationyl)-spermidine (trypanothione, TS2), which furnishes electrons to the tryparedoxin-tryparedoxin peroxidase couple to reduce the reactive oxygen species produced by macrophages. Trypanothione is kept reduced by trypanothione reductase (TR), a FAD-containing enzyme essential for parasite survival.
Methods: The enzymatic activity has been studied by stopped-flow, absorption spectroscopy, and amperometric measurements.
Results: The study reported here demonstrates that the steady-state parameters change as a function of the order of substrates addition to the TR-containing solution. In particular, when the reaction is carried out by adding NADPH to a solution containing the enzyme and trypanothione, the KM for NADPH decreases six times compared to the value obtained by adding TS2 as last reagent to start the reaction (1.9 vs. 12μM). More importantly, we demonstrate that TR is able to catalyze the oxidation of NADPH also in the absence of trypanothione. Thus, TR catalyzes the reduction of O2 to water through the sequential formation of C(4a)-(hydro)peroxyflavin and sulfenic acid intermediates. This NADPH:O2 oxidoreductase activity is shared by Saccharomyces cerevisiae glutathione reductase (GR).
Conclusions: TR and GR, in the absence of their physiological substrates, may catalyze the electron transfer reaction from NADPH to molecular oxygen to yield water.
General Significance: TR and GR are promiscuous enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagen.2015.05.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!