AI Article Synopsis

  • The P-Capt prion reduction filter effectively reduces prion infectivity in animal blood, specifically from scrapie-infected hamsters, indicating its potential use in blood services.
  • Two filtration runs showed that leukoreduction eliminated most infectivity, while the P-Capt filter further reduced it, although some residual infectivity remained in both runs.
  • Overall, the study confirms the filter's effectiveness but highlights that a small amount of prion infectivity can persist even after filtration.

Article Abstract

Background: The P-Capt prion reduction filter (MacoPharma) removes prion infectivity in model systems. This independent evaluation assesses prion removal from endogenously infected animal blood, using CE-marked P-Capt filters, and replicates the proposed use of the filter within the UK Blood Services.

Study Design And Methods: Two units of blood, generated from 263K scrapie-infected hamsters, were processed using leukoreduction filters (LXT-quadruple, MacoPharma). Approximately 100 mL of the removed plasma was added back to the red blood cells (RBCs) and the blood was filtered through a P-Capt filter. Samples of unfiltered whole blood, the prion filter input (RBCs plus plasma and SAGM [RBCPS]), and prion-filtered leukoreduced blood (PFB) were injected intracranially into hamsters. Clinical symptoms were monitored for 500 ± 1 day, and brains were assessed for spongiosis and prion protein deposit.

Results: In Filtration Run 1, none of the 50 challenged animals were diagnosed with scrapie after inoculation with the RBCPS fraction, while two of 190 hamsters injected with PFB were infected. In Filtration Run 2, one of 49 animals injected with RBCPS and two of 193 hamsters injected with PFB were infected. Run 1 reduced the infectious dose (ID) by 1.467 log (>1.187 log and <0.280 log for leukoreduction and prion filtration, respectively). Run 2 reduced prion infectivity by 1.424 log (1.127 and 0.297 log, respectively). Residual infectivity was estimated at 0.212 ± 0.149 IDs/mL (Run 1) and 0.208 ± 0.147 IDs/mL (Run 2).

Conclusion: Leukoreduction removed the majority of infectivity from 263K scrapie hamster blood. The P-Capt filter removed a proportion of the remaining infectivity, but residual infectivity was observed in two independent processes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/trf.13172DOI Listing

Publication Analysis

Top Keywords

prion reduction
8
blood
8
endogenously infected
8
hamsters injected
8
injected pfb
8
pfb infected
8
prion
6
evaluation efficacy
4
efficacy prion
4
reduction filters
4

Similar Publications

The aggregation of α-synuclein is crucial to the development of Lewy body diseases, including Parkinson's disease and dementia with Lewy bodies. The aggregation pathway of α-synuclein typically involves a defined sequence of nucleation, elongation, and secondary nucleation, exhibiting prion-like spreading. This study employed Raman spectroscopy and machine learning analysis, alongside complementary techniques, to characterize the biomolecular changes during the fibrillation of purified recombinant wild-type α-synuclein protein.

View Article and Find Full Text PDF

Mutations in hnRNP A1 drive neurodegeneration and alternative RNA splicing of neuronal gene targets.

Neurobiol Dis

January 2025

Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada. Electronic address:

RNA binding protein dysfunction is a pathogenic feature of multiple neurological diseases, including multiple sclerosis (MS). Neurodegeneration (the loss of, or damage to neurons and axons) is the primary driver of disease progression in MS. Herein, we utilized a novel, neuron-specific model of neurodegeneration by transducing primary mouse neurons with mutant forms of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) identified from MS patients, including one within the M9-nuclear localization sequence of hnRNP A1 (A1(P275S)) and a second in the prion-like domain of hnRNP A1 (A1(F263S)) to test the hypothesis that neuronal hnRNP A1 dysfunction drives neurodegeneration in MS.

View Article and Find Full Text PDF

Introduction: Age-associated depletion in nicotinamide adenine dinucleotide (NAD+) concentrations has been implicated in metabolic, cardiovascular, and neurodegenerative disorders. Supplementation with NAD+ precursors, such as nicotinamide riboside (NR), offers a potential therapeutic avenue against neurodegenerative pathologies in aging, Alzheimer's disease, and related dementias. A crossover, double-blind, randomized placebo (PBO) controlled trial was conducted to test the safety and efficacy of 8 weeks' active treatment with NR (1 g/day) on cognition and plasma AD biomarkers in older adults with subjective cognitive decline and mild cognitive impairment.

View Article and Find Full Text PDF

Prion disease is a fatal neurodegenerative disease caused by the misfolding of prion protein (PrP) encoded by the PRNP gene. While there is currently no cure for the disease, depleting PrP in the brain is an established strategy to prevent or stall templated misfolding of PrP. Here we developed in vivo cytosine and adenine base strategies delivered by adeno-associated viruses to permanently modify the PRNP locus to achieve PrP knockdown in the mouse brain.

View Article and Find Full Text PDF

Deciphering the Seed Size-Dependent Cellular Internalization Mechanism for α-Synuclein Fibrils.

Biochemistry

January 2025

Sunita Sanghi Centre of Aging and Neurodegenerative Diseases (SCAN), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

Aggregation of α-synuclein (α-Syn) and Lewy body (LB) formation are the key pathological events implicated in Parkinson's disease (PD) that spread in a prion-like manner. However, biophysical and structural characteristics of toxic α-Syn species and molecular events that drive early events in the propagation of α-Syn amyloids in a prion-like manner remain elusive. We used a neuronal cell model to demonstrate the size-dependent native biological activities of α-Syn fibril seeds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!