One-Step Synthesis of Self-Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation.

Angew Chem Int Ed Engl

International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal).

Published: July 2015

Nickel phosphide is an emerging low-cost, earth-abundant catalyst that can efficiently reduce water to generate hydrogen. However, the synthesis of nickel phosphide catalysts usually involves multiple steps and is laborious. Herein, a convenient and straightforward approach to the synthesis of a three-dimensional (3D) self-supported biphasic Ni5 P4 -Ni2 P nanosheet (NS) array cathode is presented, which is obtained by direct phosphorization of commercially available nickel foam using phosphorus vapor. The synthesized 3D Ni5 P4 -Ni2 P-NS array cathode exhibits outstanding electrocatalytic activity and long-term durability toward the hydrogen evolution reaction (HER) in acidic medium. The fabrication procedure reported here is scalable, showing substantial promise for use in water electrolysis. More importantly, the approach can be readily extended to synthesize other self-supported transition metal phosphide HER cathodes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201502577DOI Listing

Publication Analysis

Top Keywords

nickel phosphide
12
nanosheet array
8
ni5 -ni2
8
array cathode
8
one-step synthesis
4
synthesis self-supported
4
nickel
4
self-supported nickel
4
phosphide
4
phosphide nanosheet
4

Similar Publications

Construction of crystalline/amorphous NiP/FePO/graphene heterostructure by microwave irradiation for efficient oxygen evolution.

J Colloid Interface Sci

December 2024

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an 710127, China. Electronic address:

The rational design of highly efficient and cost-effective oxygen evolution reaction (OER) electrocatalysts is crucial for hydrogen production through electrocatalytic water splitting. Although the crystalline/amorphous heterostructure shows great potential in enhancing OER activity, its fabrication presents significantly greater challenges compared to that of crystalline/crystalline heterostructures. Herein, a microwave irradiation strategy is developed to construct reduced graphene oxide supported crystalline NiP/amorphous FePO heterostructure (NiP/FePO/RGO) as an efficient OER electrocatalyst.

View Article and Find Full Text PDF

Deciphering the surface electrochemical reconstruction of ruthenium-cobalt-nickel phosphide for efficient high-current hydrogen evolution and overall water splitting.

J Colloid Interface Sci

December 2024

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430073, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430073, China. Electronic address:

Article Synopsis
  • Efficient bifunctional transition metal phosphide catalysts, specifically RuCo co-doped NiP (RuCoNiP), were designed to improve hydrogen production technologies through one-step electrodeposition.
  • The resulting structures, RuCoNiP@α-Ni(OH) and RuCoNiP@Co/Ni(OH), exhibited enhanced hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities and stabilities due to optimized adsorption properties and reduced energy barriers.
  • A dual-electrode system utilizing RuCoNiP@α-Ni(OH) and RuCoNiP@Co/Ni(OH) achieved ultra-low battery voltage and impressive stability, highlighting the potential of this synthetic approach for efficient water-s
View Article and Find Full Text PDF

Electron transfer enhanced flower-like NiP-MoP heterostructure synergistically accelerates fast HER kinetics for large-current overall water splitting.

J Colloid Interface Sci

December 2024

Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China. Electronic address:

Article Synopsis
  • Researchers developed a new metal-phosphorus heterostructure (NiP-MoP@NF) that enhances hydrogen evolution reactions (HER) for efficient water electrolysis.
  • This structure combines nickel and molybdenum phosphides on nickel foam using a controlled strategy that optimizes electronic properties and increases active sites.
  • The resulting electrocatalyst shows impressive performance and stability, outperforming traditional options like Pt/C, suggesting high potential for industrial water electrolysis applications.
View Article and Find Full Text PDF

Phase Engineering Facilitates O-O Coupling via Lattice Oxygen Mechanism for Enhanced Oxygen Evolution on Nickel-Iron Phosphide.

J Am Chem Soc

December 2024

College of Materials, Institute of Artificial Intelligence, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China.

Nickel-iron-based catalysts are recognized for their high efficiency in the oxygen evolution reaction (OER) under alkaline conditions, yet the underlying mechanisms that drive their superior performance remain unclear. Herein, we revealed the molecular OER mechanism and the structure-intermediate-performance relationship of OER on a phosphorus-doped nickel-iron nanocatalyst (NiFeP). NiFeP exhibited exceptional activity and stability with an overpotential of only 210 mV at 10 mA cm in 1 M KOH and a cell voltage of 1.

View Article and Find Full Text PDF

Cobalt phosphide nanoarrays on a borate-modified nickel foam substrate as an efficient dual-electrocatalyst for overall water splitting.

J Colloid Interface Sci

December 2024

School of Chemistry & Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China. Electronic address:

Developing efficient non-noble metal dual-functional electrocatalysts for overall water splitting is essential for the production of green hydrogen. Given the significant advantages of self-supporting electrodes, regulating the growth of self-supporting nanoarrays on a conductive substrate is conducive to improving the electrocatalytic activity. In this work, aligned cobalt phosphide (CoP) nanowire arrays grown on borate-modified Ni foam substrate (CoP/R-NF) were utilized as a bifunctional electrocatalyst for both hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) in alkaline solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!