Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
VEGFR2 has been proved to play a major role in the regulation of tumor angiogenesis. Twenty-one 4-alkoxyquinazoline-based derivatives have been designed and synthesized as vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors, and their biological activities were evaluated. Among these compounds, compound 3h exhibited the most potent inhibitory activities against VEGFR2 tyrosine kinase and cell proliferation, with the IC50 values of 2.89 nm (for VEGFR2) and 0.25 μm (for MCF-7), which were comparable with the control compound. Docking simulation was performed to position compound 3h into the 4ASE active site, and the result showed that compound 3h could bind well at the 4ASE active site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cbdd.12596 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!