N-terminus of seed caleosins is essential for lipid droplet sorting but not for lipid accumulation.

Arch Biochem Biophys

INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France. Electronic address:

Published: August 2015

Caleosin, a calcium-binding protein associated with plant lipid droplets, stimulates lipid accumulation when heterologously expressed in Saccharomyces cerevisiae. Accumulated lipids are stored in cytoplasmic lipid droplets that are stabilised by incorporated caleosin. We designed a set of mutants affecting putative crucial sites for caleosin function and association with lipid droplets, i.e. the N-terminus, the EF-hand motif and the proline-knot motif. We investigated the effect of introduced mutations on caleosin capacity to initiate lipid accumulation and on caleosin sorting within cell as well as on its association with lipid droplets. Our results strongly suggest that the N-terminal domain is essential for proper protein sorting and targeting to lipid droplets but not for enhancing lipid accumulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2015.05.008DOI Listing

Publication Analysis

Top Keywords

lipid droplets
20
lipid accumulation
16
lipid
10
accumulation caleosin
8
association lipid
8
caleosin
5
droplets
5
n-terminus seed
4
seed caleosins
4
caleosins essential
4

Similar Publications

Retinal pigment epithelium (RPE) atrophy is a significant cause of human blindness worldwide, occurring in polygenic diseases such as age-related macular degeneration (AMD) and monogenic diseases such as Stargardt diseases (STGD1) and late-onset retinal degeneration (L-ORD). The patient-induced pluripotent stem cells (iPSCs)-derived RPE (iRPE) model exhibits many advantages in understanding the cellular basis of pathological mechanisms of RPE atrophy. The iRPE model is based on iPSC-derived functionally mature and polarized RPE cells that reproduce several features of native RPE cells, such as phagocytosis of photoreceptor outer segments (POS) and replenishment of visual pigment.

View Article and Find Full Text PDF

Hyperlipidemia is a major contributor to metabolic complications and tissue damage, leading to conditions such as liver steatosis, atherosclerosis, and obesity. This study aimed to investigate the effects of aqueous artichoke bract extract (AE) on lipid metabolism, liver antioxidative defense, and liver steatosis in mice fed a high-fat, high-sucrose diet while elucidating the underlying mechanisms. An 8-week study used hyperlipidemic mice treated with AE at daily doses of 100 and 200 mg/kg bw, compared to fenofibrate.

View Article and Find Full Text PDF

Brown adipocytes are characterized by a high abundance of mitochondria, allowing them to consume fatty acids for heat production. Increasing the number of brown adipocytes is considered a promising strategy for combating obesity. However, the molecular mechanisms underlying their differentiation remain poorly understood.

View Article and Find Full Text PDF

Lipid droplet formation induced by icaritin derivative IC2 promotes a combination strategy for cancer therapy.

Chin Med

December 2024

MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, China.

Background: Lipid metabolism is crucial in cancer progression. Lipid droplets (LDs) generated in cancer cells can act as protective mechanisms through alleviating lipotoxicity under stress conditions. We previously developed IC2 from the Chinese medicine icaritin as an inhibitor of stearoyl-CoA desaturase 1 (SCD1).

View Article and Find Full Text PDF

In the past decade, there has been an emerging gap between the demand and supply of vegetable oils globally for both edible and industrial use. Lipids are important biomolecules with enormous applications in the industrial sector and a major source of energy for animals and plants. Hence, to elevate the lipid content through metabolic engineering, new strategies have come up for triacylglycerol (TAG) accumulation and in raising the lipid or oil yield in crop plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!