Using target and reference fattened steer populations, the performance of genotype imputation using lower-density marker panels in Japanese Black cattle was evaluated. Population imputation was performed using BEAGLE software. Genotype information for approximately 40,000 single nucleotide polymorphism (SNP) markers by Illumina BovineSNP50 BeadChip was available, and imputation accuracy was assessed based on the average concordance rates of the genotypes, varying equally spaced SNP densities, and the number of individuals in the reference population. Two additional statistics were also calculated as indicators of imputation performance. The concordance rates tended to be lower for SNPs with greater minor allele frequencies, or those located near the ends of the chromosomes. Longer autosomes yielded greater imputation accuracies than shorter ones. When SNPs were selected based on linkage disequilibrium information, relative imputation accuracy was slightly improved. When 3000 and 10,000 equally spaced SNPs were used, the imputation accuracies were greater than 90% and approximately 97%, respectively. These results indicate that combining genotyping using a lower-density SNP chip with genotype imputation based on a population of individuals genotyped using a higher-density SNP chip is a cost-effective and valid approach for genomic prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1111/asj.12393DOI Listing

Publication Analysis

Top Keywords

single nucleotide
8
nucleotide polymorphism
8
panels japanese
8
japanese black
8
black cattle
8
imputation
8
genotype imputation
8
imputation accuracy
8
concordance rates
8
equally spaced
8

Similar Publications

Phylogenetic analysis and homology modelling of a new Cry8A crystal protein expressed in a sporulating soil bacterium.

J Struct Biol

January 2025

Postgraduate Program in Industrial Biotechnology, Tiradentes University, Aracaju, Sergipe, Brazil; Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil. Electronic address:

Cry proteins, commonly found in gram-positive soil bacteria, are used worldwide as aerial sprays or in transgenic plants for controlling crop pest populations and as insect vectors. Via PCR analysis, a spore producing soil isolate (BV5) was speculated to encode a Cry gene. Partial nucleotide sequence of the amplified PCR fragment showed homology with the Cry8 genes present in GenBank.

View Article and Find Full Text PDF

Whole-genome sequencing identified ALK as a novel susceptible gene of Hirschsprung disease.

Arab J Gastroenterol

January 2025

Department of Pediatric Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430015, China.

Background And Study Aims: Hirschsprung disease (HD) is a complex developmental disease that resulted from impaired proliferation and migration of neural crest cells. Despite the genetic causation of enteric nervous system have been found to be responsible for part of HD cases, the genetic aetiology of most HD patients still needs to be explored.

Patients And Methods: Whole-genome sequencing and subsequent Sanger sequencing validation analysis were performed in 13 HD children and their unaffected parents.

View Article and Find Full Text PDF

Regulation of actin dynamics by Twinfilin.

Curr Opin Cell Biol

January 2025

Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA 30322, USA. Electronic address:

Twinfilin is an evolutionarily conserved actin-binding protein initially mischaracterized as a tyrosine kinase but later recognized as a key regulator of cellular actin dynamics. As a member of the ADF-H family, twinfilin binds both actin monomers and filaments. Its role in sequestering G-actin is well-established, but its effects on actin filaments have been debated.

View Article and Find Full Text PDF

Efficient differentiation between Pullorum and Gallinarum by a -based PCR-HRM.

Avian Pathol

January 2025

Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, People's Republic of China.

Pullorum (. Pullorum) and Gallinarum (. Gallinarum) are the biovars of serovar Gallinarum that are responsible for pullorum disease and fowl typhoid in poultry, respectively.

View Article and Find Full Text PDF

Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!