Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Based on a field manipulative nitrogen (N) addition experiment, the effects of atmospheric N deposition level change on the plant biomass and net primary productivity (NPP), soil respiration (Rs) and net ecosystem exchange (NEE) were investigated respectively in 2009 and 2010 in two differently degraded Leymus chinensis steppes in Inner Mongolia of China, and the difference in the response of NEE to equal amount of N addition [10 g x (M2 x a)(-1), MN] between the two steppes was also discussed. The results indicated that for the light degraded Leymus chinensis steppe (site A) , the average plant aboveground biomass (AGB) in MN treatment were 21.5% and 46.8% higher than those of CK in these two years. But for the moderate degraded Leymus chinensis steppe (site B), the N addition decreased the plant AGB and ANPP in 2009, while showed positive effects in 2010. N addition increased the belowground biomass (BGB) of the both sites and belowground NPP (BNPP) of site B in both years, but decreased the BNPP of site A in 2010. The increase of N input in the two steppes did not change the seasonal variation of Rs. The cumulative annual soil C emissions in MN treatment in site A showed an increase of about 14.6% and 25.7% of those in the CK respectively for these two years, while were decreased by about 10.4% and 11.3%, respectively in site B. The NEE of MN treatments, expressed by C, for the two steppes were 59.22 g x (m2 x a)(1) and 166.68 g x (m2 x a)(-1), as well as 83.27 g x (m2 x a)(-1) and 117.47 g x (m2 x a)(-1), respectively in these two years. The increments in NEE originated from N addition for these two years were 15.79 g x (M2 x a)(-1) and 82.94 g x (M2 x a)(-1) in site A and 74.54 g x (M2 x a)(-1) and 101.23 g x (M2 x a)(-1) in site B. The N input per unit could obtain greater C sink effect in the steppe with lower initial N level.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!