A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exome Sequencing of Neonatal Blood Spots and the Identification of Genes Implicated in Bronchopulmonary Dysplasia. | LitMetric

AI Article Synopsis

  • Bronchopulmonary dysplasia (BPD) is a serious lung condition in premature infants with a strong genetic link, but previous studies haven't pinpointed its genetic causes.
  • Researchers hypothesized that rare genetic variants, likely under severe evolutionary pressure, contribute more significantly to BPD risk than common variants.
  • Through exome sequencing of twins affected by BPD, they identified 258 genes with rare mutations linked to critical lung development processes, offering valuable insights into the disease’s genetic and biological mechanisms.

Article Abstract

Rationale: Bronchopulmonary dysplasia (BPD), a prevalent severe lung disease of premature infants, has a strong genetic component. Large-scale genome-wide association studies for common variants have not revealed its genetic basis.

Objectives: Given the historical high mortality rate of extremely preterm infants who now survive and develop BPD, we hypothesized that risk loci underlying this disease are under severe purifying selection during evolution; thus, rare variants likely explain greater risk of the disease.

Methods: We performed exome sequencing on 50 BPD-affected and unaffected twin pairs using DNA isolated from neonatal blood spots and identified genes affected by extremely rare nonsynonymous mutations. Functional genomic approaches were then used to systematically compare these affected genes.

Measurements And Main Results: We identified 258 genes with rare nonsynonymous mutations in patients with BPD. These genes were highly enriched for processes involved in pulmonary structure and function including collagen fibril organization, morphogenesis of embryonic epithelium, and regulation of Wnt signaling pathway; displayed significantly elevated expression in fetal and adult lungs; and were substantially up-regulated in a murine model of BPD. Analyses of mouse mutants revealed their phenotypic enrichment for embryonic development and the cyanosis phenotype, a clinical manifestation of BPD.

Conclusions: Our study supports the role of rare variants in BPD, in contrast with the role of common variants targeted by genome-wide association studies. Overall, our study is the first to sequence BPD exomes from newborn blood spot samples and identify with high confidence genes implicated in BPD, thereby providing important insights into its biology and molecular etiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4595691PMC
http://dx.doi.org/10.1164/rccm.201501-0168OCDOI Listing

Publication Analysis

Top Keywords

exome sequencing
8
neonatal blood
8
blood spots
8
genes implicated
8
bronchopulmonary dysplasia
8
genome-wide association
8
association studies
8
common variants
8
rare variants
8
rare nonsynonymous
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!