Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The combined delivery of photo- and chemo-therapeutic agents is an emerging strategy to overcome drug resistance in treating cancer, and controlled light-responsive drug release is a proven tactic to produce a continuous therapeutic effect for a prolonged duration. Here, a combination of light-responsive graphene, chemo-agent doxorubicin and pH-sensitive disulfide-bond linked hyaluronic acid form a nanogel (called a graphene-doxorubicin conjugate in a hyaluronic acid nanogel) that exerts an activity with multiple effects: thermo and chemotherapeutic, real-time noninvasive imaging, and light-glutathione-responsive controlled drug release. The nanogel is mono-dispersed with an average diameter of 120 nm as observed by using TEM and a hydrodynamic size analyzer. It has excellent photo-luminescence properties and good stability in buffer and serum solutions. Graphene itself, being photoluminescent, can be considered an optical imaging contrast agent as well as a heat source when excited by laser irradiation. Thus the nanogel shows simultaneous thermo-chemotherapeutic effects on noninvasive optical imaging. We have also found that irradiation enhances the release of doxorubicin in a controlled manner. This release synergizes therapeutic activity of the nanogel in killing tumor cells. Our findings demonstrate that the graphene-doxorubicin conjugate in the hyaluronic acid nanogel is very effective in killing the human lung cancer cell line (A549) with limited toxicity in the non-cancerous cell line (MDCK).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5nr01075f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!