Effect of Change in Portal Venous Blood Flow Rates on the Performance of a 2.45-GHz Microwave Ablation Device.

Radiology

From the Department of Radiology, School of Medicine (G.D.D., S.M.K., A.C.L.), and School of Public Health (D.H.G.), University of Colorado, 12401 E 17th Ave, Mail Stop L954, PO Box 6510, Aurora, CO 80045.

Published: December 2015

Purpose: To investigate the effect of change in portal venous blood flow rates on the size and shape of ablations created by a 2.45-GHz microwave ablation device.

Materials And Methods: This study was exempt from review by the institutional animal care and use committee. An in vitro bovine liver model perfused with autologous blood via the portal vein at five flow rates (60, 70, 80, 90, and 100 mL/min per 100 g of liver) was used to evaluate the effect of change in flow rates on the size and shape of coagulation created by a 2.45-GHz, 140-W microwave ablation device operated for 5 and 10 minutes. Three ablations per ablation time were conducted in each of 10 livers, with two livers perfused at each flow rate. Short- and long-axis diameters were measured from gross specimens, and volume and sphericity index were calculated. General linear mixed models that accounted for correlations within the liver were used to evaluate the effects of lobe, flow, and ablation time on size and sphericity index of ablations.

Results: Flow did not have a significant effect on the size or shape of coagulation created at 5 or 10 minutes (P > .05 for all tests). The mean short- and long-axis diameters and volume were 3.2 cm (95% confidence interval [CI]: 3.1, 3.3), 5.6 cm (95% CI: 5.4, 5.8), and 30.2 cm(3) (95% CI: 28.4, 32.1) for the 5-minute ablations and 3.8 cm (95% CI: 3.7, 3.9), 6.5 cm (95% CI: 6.3, 6.7), and 49.3 cm(3) (95% CI: 47.5, 51.2), for the 10-minute ablations, respectively. The mean sphericity index for both 5- and 10-minute ablations was 34.4% (95% CI: 32%, 36.7%).

Conclusion: Change in portal venous blood flow rates did not have an effect on the size and shape of ablations created by a 2.45-GHz microwave ablation device.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2015150102DOI Listing

Publication Analysis

Top Keywords

flow rates
20
microwave ablation
16
size shape
16
change portal
12
portal venous
12
venous blood
12
blood flow
12
245-ghz microwave
12
ablation device
12
rates size
12

Similar Publications

CFD simulation of turbulent mass transfer of HS and O in a stirring tank.

Water Sci Technol

January 2025

Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin 13355, Germany.

This study explores the computational fluid dynamics (CFD) simulation of oxygen (O) and hydrogen sulfide (HS) mass transfer in a highly turbulent stirring tank. Using the open-source software OpenFOAM, we extended three-dimensional two-phase flow solvers with a rotating mesh feature to model the mass transfer processes between the water and air phases. The accuracy of these simulations was validated against experimental data, demonstrating a strong agreement in the mass transfer rates of HS and O.

View Article and Find Full Text PDF

Oestrogen and progesterone fluctuate cyclically in women throughout their adult lives. Although these hormones cross the blood-retinal barrier and bind to intraocular receptors, their effects remain unclear. We present the first review to date on associations between posterior pole structures-specifically the macula, choroid, and optic disc-and both the menstrual cycle and post-menopausal period, utilising multimodal imaging techniques in healthy adult non-pregnant women.

View Article and Find Full Text PDF

To investigate the effect of 1α,25(OH)D on hepatic stellate cells and the mechanism of the TGF-β1/Smad signaling pathway.LX2 cells were treated with TGF-β1 and different concentrations of 1α,25(OH)D. Cell proliferation was assessed using the CCK8 assay to determine the optimal concentration of 1α,25(OH)D activity.

View Article and Find Full Text PDF

Cognitive Radio (CR) technology enables wireless devices to learn about their surrounding spectrum environment through sensing capabilities, thereby facilitating efficient spectrum utilization without interfering with the normal operation of licensed users. This study aims to enhance spectrum sensing in multi-user cooperative cognitive radio systems by leveraging a hybrid model that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. A novel multi-user cooperative spectrum sensing model is developed, utilizing CNN's local feature extraction capability and LSTM's advantage in handling sequential data to optimize sensing accuracy and efficiency.

View Article and Find Full Text PDF

Background: Superficial temporal artery (STA)-middle cerebral artery (MCA) side-to-side microvascular anastomosis can achieve the same clinical effects as traditional STA-MCA end-to-side anastomosis in extracranial-intracranial revascularization surgery, furthermore, STA-MCA side-to-side anastomosis has the lower risk of postoperative cerebral hyperperfusion syndrome (CHS) and the potential to recruit all scalp arteries as the donor sources via self-regulation. Therefore, STA-MCA side-to-side microvascular anastomosis seems to be a revascularization strategy superior to traditional STA-MCA end-to-side anastomosis. In this study, we presented seven cases in which a STA-MCA side-to-side microvascular anastomosis was performed with a 4-5 mm long arteriotomy using the in-situ intraluminal suturing technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!