White-tailed deer (Odocoileus virginianus) are commonly exposed to disease agents that affect livestock but environmental factors that predispose deer to exposure are unknown for many pathogens. We trapped deer during winter months on two study areas (Northern Forest and Eastern Farmland) in Wisconsin from 2010 to 2013. Deer were tested for exposure to six serovars of Leptospira interrogans (grippotyphosa, icterohaemorrhagiae, canicola, bratislava, pomona, and hardjo), bovine viral diarrhea virus (BVDV-1 and BVDV-2), infectious bovine rhinotracheitis virus (IBR), and parainfluenza 3 virus (PI3). We used logistic regression to model potential intrinsic (e.g., age, sex) and extrinsic (e.g., land type, study site, year, exposure to multiple pathogens) variables we considered biologically meaningful to exposure of deer to livestock pathogens. Deer sampled in 2010-2011 did not demonstrate exposure to BVDV, so we did not test for BVDV in subsequent years. Deer had evidence of exposure to PI3 (24.7%), IBR (7.9%), Leptospira interrogans serovar pomona (11.7%), L. i. bratislava (1.0%), L. i. grippotyphosa (2.5%) and L. i. hardjo (0.3%). Deer did not demonstrate exposure to L. interrogans serovars canicola and icterohaemorrhagiae. For PI3, we found that capture site and year influenced exposure. Fawns (n = 119) were not exposed to L. i. pomona, but land type was an important predictor of exposure to L. i. pomona for older deer. Our results serve as baseline exposure levels of Wisconsin white-tailed deer to livestock pathogens, and helped to identify important factors that explain deer exposure to livestock pathogens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4452592 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0128827 | PLOS |
Int Immunopharmacol
January 2025
Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China. Electronic address:
Tripartite motif-containing proteins (TRIMs), comprising the greatest subfamily of E3 ubiquitin ligases with approximately 80 members of this family, are widely distributed in mammalian cells. TRIMs actively participate in ubiquitination of target proteins, a type of post-translational modification associated with protein degradation and other functions. Tripartite motif-containing protein 29 (TRIM29), a member of the TRIM family, differs from other members of this family in that it lacks the RING finger structural domain containing cysteine and histidine residues that mediates DNA binding, protein-protein interactions, and ubiquitin ligase, at its N-terminus.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Critical Care Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China. Electronic address:
Streptococcus suis (S. suis) is a neglected and emerging pathogen that leads to severe economic losses in swine industry. Despite its epidemic potential, the zoonotic threat posed by S.
View Article and Find Full Text PDFPLoS One
January 2025
College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
Porcine epidemic diarrhea virus (PEDV) is a significant pathogen affecting swine, causing severe economic losses worldwide. This study explores the regulatory role of miRNA-328-3p to ZO-1 expression and its impact on PEDV proliferation via the PLC-β1-PKC pathway in IPEC-J2 cells. We found that miRNA-328-3p can target ZO-1, influencing its expression and subsequently affecting the integrity of tight junctions in the cells.
View Article and Find Full Text PDFPLoS One
January 2025
Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Muenster, Germany.
Small rodents can cause problems on farms such as infrastructure damage, crop losses or pathogen transfer. The latter threatens humans and livestock alike. Frequent contacts between wild rodents and livestock favour pathogen transfer and it is therefore important to understand the movement patterns of small mammals in order to develop strategies to prevent damage and health issues.
View Article and Find Full Text PDFNat Commun
January 2025
Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
Genomics is a cornerstone of modern pathogen epidemiology yet demonstrating transmission in a One Health context is challenging, as strains circulate and evolve within and between diverse hosts and environments. To identify phylogenetic linkages and better define relevant measures of genomic relatedness in a One Health context, we collated 5471 Escherichia coli genome sequences from Australia originating from humans (n = 2996), wild animals (n = 870), livestock (n = 649), companion animals (n = 375), environmental sources (n = 292) and food (n = 289) spanning over 36 years. Of the 827 multi-locus sequence types (STs) identified, 10 STs were commonly associated with cross-source genomic clusters, including the highly clonal ST131, pandemic zoonotic lineages such as ST95, and emerging human ExPEC ST1193.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!