Posttranslational modifications have critical roles in diverse biological processes through interactions. Tumor-suppressor protein p53 and nucleotide excision repair factor XPC each contain an acidic region, termed the acidic transactivation domain (TAD) and acidic fragment (AF), respectively, that binds to the pleckstrin homology (PH) domain of the p62 subunit of the transcription factor TFIIH. Human p53-TAD contains seven serine and two threonine residues, all of which can be phosphorylated. Similarly, XPC-AF contains six serine and two threonine residues, of which Thr117, Ser122 and Ser129 have been reported as phosphorylation sites in vivo, although their phosphorylation roles are unknown. Phosphorylation of Ser46 and Thr55 of p53-TAD increases its binding ability; however, the role of XPC-AF phosphorylation remains elusive. Here we describe a system for real-time and simultaneous monitoring of the phosphorylation and p62-PH affinity of p53-TAD and XPC-AF using nuclear magnetic resonance (NMR) spectroscopy. Unexpectedly, among seven reported kinases that presumably phosphorylate Ser46 and/or Thr55 of p53-TAD, only two specific and high-efficiency enzymes were identified: JNK2α2 for Ser46 and GRK5 for Thr55. During interaction with p62-PH, four different affinity complexes resulting from various phosphorylation states of p53-TAD by the kinases were identified. The kinetics of the site-specific phosphorylation reaction of p53-TAD and its affinity for p62-PH were monitored in real-time using the NMR system. Isothermic calorimetry showed that phosphorylation of Ser129 of XPC-AF increases binding to p62-PH. Although CK2 was predicted to phosphorylate Ser122, Ser129 and Ser140 from its sequence context, it specifically and efficiently phosphorylated only Ser129. Simultaneous monitoring of the phosphorylation and augmentation in p62-PH binding identified a key residue of p62-PH for contacting phosphorylated Ser129. In summary, we have established an NMR system for real-time and simultaneous monitoring of site-specific phosphorylation and enhancement of affinity between phosphorylation domains and their target. The system is also applicable to other posttranslational modifications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753521 | PMC |
http://dx.doi.org/10.1038/oncsis.2015.13 | DOI Listing |
Sensors (Basel)
January 2025
Department of Mechanical Engineering, Politecnico di Milano, Via G. La Masa 1, 20156 Milano, Italy.
In naval engineering, particular attention has been given to containerships, as these structures are constantly exposed to potential damage during service hours and since they are essential for large-scale transportation. To assess the structural integrity of these ships and to ensure the safety of the crew and the cargo being transported, it is essential to adopt structural health monitoring (SHM) strategies that enable real-time evaluations of a ship's status. To achieve this, this paper introduces an advancement in the field of smart sensing and SHM that improves ship monitoring and diagnostic capabilities.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Computer Science, South China Normal University, Guangzhou 510555, China.
Multivariate time series anomaly detection (MTSAD) can effectively identify and analyze anomalous behavior in complex systems, which is particularly important in fields such as financial monitoring, industrial equipment fault detection, and cybersecurity. MTSAD requires simultaneously analyze temporal dependencies and inter-variable relationships have prompted researchers to develop specialized deep learning models to detect anomalous patterns. In this paper, we conducted a structured and comprehensive overview of the latest techniques in deep learning for multivariate time series anomaly detection methods.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, 30-059, Krakow, Poland.
In this study, a predictive maintenance (PdM) system focused on feature selection for the detection and classification of simulated defects in wind turbine blades has been developed. Traditional PdM systems often rely on numerous, broadly chosen diagnostic indicators derived from vibration data, yet many of these features offer little added value and may even degrade model performance. General feature selection methods might not be suitable for PdM solutions, as information regarding observed faults is often misinterpreted or lost.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondria, Oxidative Stress and Muscle Plasticity", Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France.
The continuous monitoring of oxygen saturation (SpO) and respiratory rates (RRs) are major clinical issues in many cardio-respiratory diseases and have been of tremendous importance during the COVID-19 pandemic. The early detection of hypoxemia was crucial since it precedes significant complications, and SpO follow-up allowed early hospital discharge in patients needing oxygen therapy. Nevertheless, fingertip devices showed some practical limitations.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing 100081, China.
Epilepsy is a group of neurological disorders characterized by epileptic seizures, and it affects tens of millions of people worldwide. Currently, the most effective diagnostic method employs the monitoring of brain activity through electroencephalogram (EEG). However, it is critical to predict epileptic seizures in patients prior to their onset, allowing for the administration of preventive medications before the seizure occurs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!