Low temperature conditioning of garlic (Allium sativum L.) "seed" cloves induces alterations in sprouts proteome.

Front Plant Sci

Laboratorio de Fisiología y Bioquímica Poscosecha de Frutas y Hortalizas, Departamento de Investigación y Posgrado, Facultad de Química, Universidad Autónoma de Querétaro Querétaro, Mexico.

Published: June 2015

Low-temperature conditioning of garlic "seed" cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that "seed" bulbs from "Coreano" variety conditioned at 5°C for 5 weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic "seed" cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23°C), and the other was conditioned at low temperature (5°C) for 5 weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic "seed" cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429546PMC
http://dx.doi.org/10.3389/fpls.2015.00332DOI Listing

Publication Analysis

Top Keywords

"seed" cloves
16
conditioning garlic
12
garlic "seed"
12
low temperature
8
low-temperature conditioning
8
5°c weeks
8
plant stress
8
garlic
5
"seed"
5
cloves
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!