The neocortex is unique to mammals and its evolutionary origin is still highly debated. The neocortex is generated by the dorsal pallium ventricular zone, a germinative domain that in reptiles give rise to the dorsal cortex. Whether this latter allocortical structure contains homologs of all neocortical cell types it is unclear. Recently we described a population of DCX+/Tbr1+ cells that is specifically associated with the layer II of higher order areas of both the neocortex and of the more evolutionary conserved piriform cortex. In a reptile similar cells are present in the layer II of the olfactory cortex and the DVR but not in the dorsal cortex. These data are consistent with the proposal that the reptilian dorsal cortex is homologous only to the deep layers of the neocortex while the upper layers are a mammalian innovation. Based on our observations we extended these ideas by hypothesizing that this innovation was obtained by co-opting a lateral and/or ventral pallium developmental program. Interestingly, an analysis in the Allen brain atlas revealed a striking similarity in gene expression between neocortical layers II/III and piriform cortex. We thus propose a model in which the early neocortical column originated by the superposition of the lateral olfactory and dorsal cortex. This model is consistent with the fossil record and may account not only for the topological position of the neocortex, but also for its basic cytoarchitectural and hodological features. This idea is also consistent with previous hypotheses that the peri-allocortex represents the more ancient neocortical part. The great advances in deciphering the molecular logic of the amniote pallium developmental programs will hopefully enable to directly test our hypotheses in the next future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429232PMC
http://dx.doi.org/10.3389/fnins.2015.00162DOI Listing

Publication Analysis

Top Keywords

dorsal cortex
16
upper layers
8
layers neocortex
8
cortex
8
olfactory cortex
8
developmental program
8
piriform cortex
8
pallium developmental
8
neocortex
6
dorsal
5

Similar Publications

Dissection of the long-range circuit of the mouse intermediate retrosplenial cortex.

Commun Biol

January 2025

Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China.

The retrosplenial cortex (RSP) is a complex brain region with multiple interconnected subregions that plays crucial roles in various cognitive functions, including memory, spatial navigation, and emotion. Understanding the afferent and efferent connectivity of the RSP is essential for comprehending the underlying mechanisms of its functions. Here, via viral tracing and fluorescence micro-optical sectioning tomography (fMOST), we systematically investigated the anatomical organisation of the upstream and downstream circuits of glutamatergic and GABAergic neurons in the dorsal and ventral RSP.

View Article and Find Full Text PDF

Effects of chronic ethanol exposure on dorsal medial striatal neurons receiving convergent inputs from the orbitofrontal cortex and basolateral amygdala.

Neuropharmacology

January 2025

Department of Neuroscience; Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425. Electronic address:

Alcohol use disorder is associated with altered function of cortical-amygdala-striatal circuits such as the orbitofrontal cortex (OFC), basolateral amygdala (BLA) and their connections to the dorsal medial striatum (DMS) shown to be involved in goal-directed actions. Using retrobead tracing, we previously reported enhanced excitability of DMS-projecting OFC neurons in mice following 3-to-7-day withdrawal from chronic intermittent ethanol (CIE) exposure. In the same animals, spiking of DMS-projecting BLA neurons was decreased at 3-days post-withdrawal followed by an increase in firing at 7- and 14-days.

View Article and Find Full Text PDF

Feature selectivity of corticocortical feedback along the primate dorsal visual pathway.

J Neurophysiol

January 2025

Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada.

Anatomical studies have revealed a prominent role for feedback projections in the primate visual cortex. Theoretical models suggest that these projections support important brain functions, like attention, prediction, and learning. However, these models make different predictions about the relationship between feedback connectivity and neuronal stimulus selectivity.

View Article and Find Full Text PDF

A distributed subcortical circuit linked to instrumental information-seeking about threat.

Proc Natl Acad Sci U S A

January 2025

Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3TA, United Kingdom.

Daily life for humans and other animals requires switching between periods of threat- and reward-oriented behavior. We investigated neural activity associated with spontaneous switching, in a naturalistic task, between foraging for rewards and seeking information about potential threats with 7T fMRI in healthy humans. Switching was driven by estimates of likelihood of threat and reward.

View Article and Find Full Text PDF

Addiction to psychostimulants, including cocaine, causes widespread morbidity and mortality and is a major threat to global public health. Currently, no pharmacotherapies can successfully treat psychostimulant addiction. The neuroactive effects of cocaine and other psychostimulants have been studied extensively with respect to their modulation of monoamine systems (particularly dopamine); effects on neuropeptide systems have received less attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!